AN INTERCONNECT-DRIVEN SYSTEM-ON-CHIP
FLOORPLANNING FRAMEWORK

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Patrick Siu-ying Hung
August 2002

© Copyright 2002 by Patrick Siu-ying Hung
All Rights Reserved

ii

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Michael J. Flynn
(Principal Adviser)

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Giovanni De Micheli

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

John T. Gill III

Approved for the University Committee on Graduate Studies:

iii

Preface

As VLSI technology reaches deep submicron era, interconnect properties instead of gate
properties plays a dominant role in determining processor performance and power consump-
tion. While this relationship has been known for a number of years, most System-On-Chip
(SOC) vendors today still follow the traditional design flow, separating architectural design,
logic design and physical design into three distinct stages. Chip floorplanning, which affects
architectural and logic design and determines the overall system performance, is often per-
formed only in the physical layout stage. This is one of the main reasons why many SOC’s
have problems surpassing 400MHz, while custom-made, high-end processors have already
exceeded 2.5GHz.

The focus of our research is to develop an interconnect-driven floorplanning framework,
supporting effective chip floorplanning in the architectural design stage. In order to esti-
mate the effects of interconnect in the early design stages, we examine interconnect models
on three different levels. First, we developed a wirelength distribution model within a func-
tional block. Our proposed wirelength distribution model is more flexible and accurate
than the previous models. It can be used to estimate wire load, wire delay and interconnect
power consumption within a synthesized functional block. Second, we developed a wire
congestion model, identifying congestion hotspots among multiple blocks in a floorplan.
The model can be used to model the effects of interconnect coupling in a floorplan. Third,
we developed an interconnect-driven processor performance model, which generalizes the
relationship between processor performance and interconnect overhead.

The three interconnect models, constituting the basis of our research, were integrated
with other design tools previously developed in our research group to form a unified floor-
planning framework. Our research shows that system-level floorplanning in the architectural

design stage is necessary in the deep-submicron era.

v

Acknowledgments

First, and foremost, I would like to thank my advisor, Professor Michael J. Flynn, for
his superb technical guidance and generous financial support in the past few years. Most
importantly, he taught me how to conduct independent research, which will continue to be
an invaluable asset for me for the rest of my life. I would also like to express my gratitude to
Professor De Micheli and Professor John Gill, who carefully read through this dissertation
and provided many constructive comments.

There are many other people to whom I owe a debt of appreciation for their assistance
and support to the preparation and completion of this work. I would like to thank Su-
san Gere, who helped maintain a friendly and stable research environment for all graduate
students. I would like to thank the current and previous members of my research group, es-
pecially Professor Martin Morf, Professor Sang Bang Choi, Professor Neville Harris, James
Bennett, Takahiro Nishiyama, Kevin Rudd, Steve Fu, Grant McFarland, Albert Liddicoat,
Hossam Fahmy and Andrew Zimmerman. They have spent countless hours with me dis-
cussing on my research, and have proved to be my best sounding board. I would like to
thank Luc Séméria, who worked with me on the statistical wirelength distribution model.

Last, but definitely not least, I would like to thank my wife for her unfailing moral
support during my years at Stanford. Without whom none of this work would have been

possible.

Contents

Preface

Acknowledgments

1 Introduction

2

1.1
1.2

1.3

1.4

On-Chip Interconnect System,
Deep Submicron Interconnect Issues
1.2.1 System Performance L.
1.2.2 Power Dissipation
1.2.3 Reliability and Manufacturing Yield
1.2.4 Signal Integrity L
Our Work e
1.3.1 Motivation
1.3.2 A Priori Interconnect Models
Organization of this Dissertation

Wirelength Distribution Model

21
2.2

2.3

2.4

Introductiono
Wirelength Distribution Model for Rectilinear Blocks
2.2.1 Effects of Block Aspect Ratio
2.2.2 Effects of Routing Obstacles.
Experimental Results oo
2.3.1 Average Wirelength Model
2.3.2 Wirelength Distribution Model

Summary e e e e e

vi

iv

O 00 0 N o Ot W o= =

—_ =
[—

3 Wire Congestion Model

3.1
3.2

3.3

3.4

Introduction
Wire Congestion Model
3.2.1 Problem Formulation,
3.2.2 Algorithm
3.2.3 Experimental Results 000
Floorplan Optimizer
3.3.1 Problem Formulation,
3.3.2 Algorithm
3.3.3 Experimental Results
Summary e e e e e

4 Processor Performance Model

4.1
4.2

4.3
4.4

4.5

Introduction
Problem Formulationo o
421 TIPCModel
4.2.2 Interconnect/Complexity Overhead Models
4.2.3 Overhead Examples
4.2.4 Upper Bound on Optimum Instruction Issue Width
Experimental Results o o
Discussion
4.4.1 Approximation of Nopy o o o oo oL
4.4.2 Effects of the Processor Organization.
4.4.3 Technology Trends
Summaryo e

5 IPLAN Floorplanning Framework

5.1
5.2

5.3
5.4

Introduction L
Components in IPLAN Framework
5.2.1 MXS Performance Simulator
5.2.2 Area/Delay Estimator, .
5.2.3 Interconnect Estimator and Floorplan Optimizer
Case Study e

Summary e e e e e

vil

29
29
30
30
36
40
44
44
49
52
o4

55
95
o7
o7
62
63
65
67
74
74
74
75
76

6 Conclusions and Future Work 98

6.1 Conclusions L e 98
6.2 Contributions of this Dissertation, 99
6.3 Future Work L 100

A Structural Wirelength Distribution Function 102
A1 Introduction. L e e 102
A.2 Building Generating Polynomials of One-Dimensional Structures 103
A.3 Generating Polynomials for More Complicated Architectures 104
A.3.1 Rectangular Block L. 104

A3.2 L-Shaped Block 106

A.3.3 O-Shaped and C-Shaped Blocks 108

A.3.4 Comparison of L-Shaped Block, C-Shaped Block and O-Shaped Block 110

Bibliography 111

viii

List of Tables

21
2.2
2.3

4.1
4.2
4.3
4.4

5.1
5.2
5.3

5.4

9.5

0.6

Al
A2

Structural Length Distribution Function for the L-shaped Block! 20
Experimental Results on Average Wirelength Estimation 22
Experimental Results on Average Wirelength Estimation 23
Various Interconnect and Complexity Overhead Models® 62

Upper Bounds on N, for Various Interconnect/Complexity Overhead Models 67

Functional Unit Latencies 68
Benchmarks Simulated Using the MXS Simulation 68
Lexra’s LX4380 Processor Core Baseline Parameters 90
MXS Simulation Results for the Compress Benchmark 91
Comparison between the Original Architecture and the Modified Architecture

with a Non-pipelined 64KB Data Cache 93
Comparison between the Original Architecture and the Modified Architecture

with a 64KB 2-Stage Pipelined Data Cache 95
Comparison between a 32KB non-pipelined data cache and a 64KB 2-stage

pipelined data cache in a 2-way superscalar processor. 95
Summary of Different Design Alternatives 96
Structural Length Distribution Function for Rectangular Block 106
Structural Length Distribution Function for L-Shaped Block 107

X

List of Figures

1.1 Metal interconnect structure of a chip after etching of dielectric layers [ES00] 1
1.2 Topview of a CMOS Inverter Layout 2
1.3 3-D View of the Interconnections in a CMOS Inverter 2
1.4 Cross-sectional View of the Interconnections inan IC. 4
1.5 Total Transistors per Chip from 2001 to 2016 4
1.6 On-Chip Clock from 2001 t0 2016 5
1.7 Interconnect Delay 6

9

1.8 Traditional Design Flow

1.9 Lost Revenue 10
2.1 Rectangular array of m xn gates oo 15
2.2 Definitions of Blocks A, B,and C 17
2.3 Average Wirelength Estimations vs Aspect Ratio 19
2.4 Wire Density Function ¢(!) for Various Aspect Ratios 20
2.5 Routing Obstacle Examples 0 s 21
2.6 Wirelength Distributions of L-shaped and Rectangular Blocks 22
2.7 Average Wirelength vs Aspect Ratio (Cordic) 24
2.8 Average Wirelength vs Aspect Ratio (Multiplier) 24
2.9 Area vs Aspect Ratio (Multiplier) 25
2.10 Wirelength Distribution with Unity Aspect Ratio (IDCT) 26
2.11 Wirelength Distribution with Aspect Ratio = 6.0 (IDCT) 27
2.12 Wirelength Distribution with Routing Obstacles (IDCT) 27
3.1 Routing between A(0,0) and B(3,2), 30
3.2 Routing Probability through a Point 31
3.3 Simplified Congestion Model Example 32

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9

4.10
4.11

4.12

Via Minimization Example o000 34

Wire Congestion Routing between Blocks Example 35
[lustration of Wire Congestion Algorithm 38
Hlustration of Wire Congestion Routing Obstacle Algorithm (« =1.0) . . . 39
Wire Congestion Example: Chip A (Adaptive FIR Filter) 42
Wire Congestion Example: Chip B (16-bit Microprocessor) 43
A Slicing Floorplan Example oL 44
Binary Tree Representation of the Slicing Floorplan 45
A Non-Slicing Floorplan Example 46
Sequence Pair Example oo 0o oo 47
Sakurai Wire Capacitance Model 48
MCNC Benchmark Statistics L. 52
MCNC Benchmark Result 53
Processor Performance vs Number of Pipeline Stages. 56
Instruction Issue in a 4-Way Superscalar Processor 58
Number of Active Instructions in a Processor 59

Relationship between issue slot idle probability (P) and the number of active

instructions (M) for different instruction dependency probabilities (d = 5%,

6%, 7%, 8%, 9%, 10%) 60
IPC vs Instruction Issue Width (V) based on Equations 4.6 and 4.8. . .. 61
Register File Access Time vs Instruction Issue Width (N). 64
Wakeup Logic Delay vs Instruction Issue Width (N). 65
Relative Performance vs Instruction Issue Width N. 66

Comparison of the modeled and simulated instructions per cycle (IPC) vs
instruction issue width (039.waveb). L. 69
IPC percentage errors between the model and the MXS simulation. 70
Comparison of the relative performance computed using various overhead
models for the simulated IPC and modeled IPC using the 039.waved benchmark. 71
Comparison of the relative performance computed using various overhead
models for the simulated IPC and modeled IPC based on 008.espresso bench-
mark. ... 71

x1

4.13

4.14

4.15

4.16

4.17

4.18

5.1
5.2
5.3
5.4
9.5
0.6
0.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

Al
A2
A3
A4
A5

Optimum instruction issue width for overhead scale factor O = 10%, 20%,
30%. . e
Optimum instruction issue width N,,; vs overhead scale factor O based on
256.bzip2 benchmark. oo
Optimum instruction issue width N,,; vs overhead scale factor O based on
013.spice2gb benchmark. L oL
The instructions per cycle (IPC) as a function of window size and instruction
issue width. o Lo
The instructions per cycle (IPC) as a function of cache size and instruction
issue width. o Lo

Overhead scale factor O vs feature size.

Simplified Block Diagram of IPLAN Floorplanning Framework
Simplified MXS Simulator Block Diagram
Simplified MXS Simulation Architecture
MXS Performance Simulator Graphical User Interface
IPLAN Routing Obstacle Example
IPLAN Interconnection Example (Lexra’s LX4380)
LX4380’s Floorplan after Optimizaton
LX4380’s Floorplan after Optimization and Compaction
Sequence Pair Representing LX4380’s Floorplan.
Floorplan Horizontal Constraint Graph
Floorplan Vertical Constraint Graph
Miss Rates with 32KB and 64KB Cache Sizes
Cache Latency vs Cache Size
Optimized Floorplan with a 64KB Data Cache
Block Diagrams of Non-pipelined Cache and 2-Stage Pipelined Cache
Optimized Floorplan with Dual Issue

Two chains of nodes connected at every node in a 1-D Manhattan grid . . .
Two chains of nodes connected at one end node in a 1-D Manhattan grid

Two chains of nodes connected at two end nodes in a 1-D Manhattan grid .
m x n Rectangular Block 0 oL,
L-Shaped Block L

xii

72

73

73

75

A6
AT
A8

O-Shaped Block
C-Shaped Block e
Structural Wirelength Distributions of an L-shaped block, a C-shaped block
and an O-shaped block (M =256, N =128).

xiii

Chapter 1

Introduction

1.1 On-Chip Interconnect System

On-chip interconnect system is used for distributing clocks and power supplies, and connect-
ing signals among circuits. Today digital integrated circuit (IC) is composed of transistors
fabricated epitaxially on a lightly doped silicon substrate. Alternating dielectric and metal
layers are grown on top of the transistors. The metal layers are typically made of copper
(Cu), aluminum (Al) or tungsten (W), whereby the dielectric layers are made of silicon
dioxide (Si03). The state-of-the-art silicon chips may consist of eight or more metal lay-
ers (My — Mjg), forming a three-dimensional interconnect structure (Figure 1.1) [Tai, Unil.
To minimize cross couplings between layers, all interconnections usually run in the same

direction within a layer and perpendicularly between adjacent layers [She95].

Figure 1.1: Metal interconnect structure of a chip after etching of dielectric layers [ES00]

CHAPTER 1. INTRODUCTION 2

Figure 1.2 shows the layout diagram of a complementary metal-oxide-semiconductor
field-effect transistor (CMOS) inverter. The pMOS transistor is located in an n-doped well,
whereas the nMOS transistor is located in a p-doped substrate. In this example, the metal
layer M is used for providing power supply and connecting the CMOS inverter input and
output signals to the other circuits. Metal contacts, known as vias, connects the metal layer

to the two transistor gates.

nwell i~~~ — VDD (metal1)
i -] B [PMos
B |
IN (metal1)

Gate (poly) OUT (metal1)

GND (metal1)

Figure 1.2: Topview of a CMOS Inverter Layout

A three-dimensional (3-D) visualization of the interconnections is shown in Figure 1.3.
It is tedious to precisely measure all interconnect characteristics, but researchers have de-
veloped approximation models extracting the vital interconnect parameters, such as capac-

itance and inductance, fairly accurately and efficiently [Bak90].

Figure 1.3: 3-D View of the Interconnections in a CMOS Inverter

CHAPTER 1. INTRODUCTION 3

On-chip interconnections can be broadly divided into the three categories:

e Local interconnections are intended for connecting transistors within a functional
block. They usually use the minimum pitch to wire up large circuits at local level.
These wires have relatively high resistivity and are typically driven by small transis-
tors. Their maximum length scales with feature size and is around 1mm at 0.18 um

feature size.

e Intermediate interconnections are for spanning large circuit blocks. They normally
use a pitch and cross-sectional area greater than the minimum and have a maximum
length of around 2 — 5mm. Unlike local interconnections, these wires do not scale

with feature size.

e Global interconnections are for distributing power supply and for connecting data
busses, control busses and clock signals. They are usually much less dense and have
large cross-sectional area to minimize wire delay and power loss. These wires span

the entire chip connecting separate functional blocks within the design.

As feature size shrinks, the projected system-on-chip (SOC) die size remains roughly
constant in the near future, incorporating more functionalities on a single chip [Ass01].
Thus, global and intermediate interconnection delays are increasingly more dominant rel-
ative to gate delays. Usually, the lower metal layers within smaller cross-sectional areas
(e.g. My — My) are used for local interconnections, and the higher metal layers with larger
cross-sectional areas (e.g. Mz — Mjg) are reserved for intermediate and global interconnec-
tions. Figure 1.4 shows the cross-sectional view of these three types of interconnections in

an integrated circuit.

1.2 Deep Submicron Interconnect Issues

Deep submicron technology allows designers to build very complicated chips with hundreds
of millions of very fast transistors. According to the Semiconductor Industries Association
(SIA), the number of transistors and the clock frequencies for high performance micropro-

cessors will continue to grow exponentially in the near future [Ass01] (Figures 1.5 and 1.6).

CHAPTER 1. INTRODUCTION

" <4— Passivation
-4— Dielectric
Etch Stop Layer

Global (up to 5) X Dielectric Capping Layer

Copper Conductor with

Barrier/Nucleation Layer

Intermediate (up to 4) =X

Local (2) -
(2) ¢— Pre Metal Dielectric
Tungsten Contact Plug

Figure 1.4: Cross-sectional View of the Interconnections in an IC

Transistors per Chip

7000

__ 6000 -

1]

5

= 5000 -

€

c

= 4000 4

4

S

g 3000 4

c

[

= 2000 -

°

)

$ 1000 | I

ol [[.
150nm 107nm 80nm 65nm 45nm 32nm 22nm
2001 2003 2005 2007 2010 2013 2016

Technology / Year of First Shipment

Figure 1.5: Total Transistors per Chip from 2001 to 2016

CHAPTER 1. INTRODUCTION)

On-Chip Clock
35
30 A
= 25 4
I
(0]
£ 20
>
2
o 151
E]
T
[
i 10 -
| . l
o, =m
150nm 107nm 80nm 65nm 45nm 32nm 22nm
2001 2003 2005 2007 2010 2013 2016

Technology / Year of First Shipment

Figure 1.6: On-Chip Clock from 2001 to 2016

However, the interconnect properties do not scale with the feature size, thus limiting the
usefulness of the vast number of fast transistors. This section discusses the issues related
to the on-chip interconnect system, including performance, power consumption, reliability,

manufacturing yield, and signal integrity.

1.2.1 System Performance

Much improvement in chip performance has been due to technology scaling, allowing in-
creased circuit densities at higher clock frequencies. As feature sizes shrink, device area
shrinks roughly as the square of the scaling factor, and device delay improves approxi-
mately linearly with feature size. Unfortunately, interconnect delay does not scale with
the feature size. When all three dimensions of an interconnect wire are scaled down by the
same factor, the interconnect delay remains roughly unchanged. Consequently, interconnect
delay becomes the performance bottleneck [FHR99].

Systems today are integrated to upward of 10% devices per square centimeter. Inter-
connects — both within a single chip and across chip boundaries — determine the signal
latency. Figure 1.7 shows the projections of gate and interconnect delays. While local in-

terconnections scale roughly with the feature size, intermediate and global interconnections

CHAPTER 1. INTRODUCTION 6

certainly do not. This poses a major challenge in the future system-level design, implying

that “interconnect-driven architectures” are becoming crucial.

—®~ Gate Delay
(Fan out 4)

& | ocal
(Scaled)

=

Global with Repeaters

=¥~ Global w/o Repeaters

Relative Delay

250 180 130 90 65 45 32

Process Technology Node (nm)

Figure 1.7: Interconnect Delay

A related problem is the fact that the present CAD design tool cannot handle the
exponential growth in the number of interconnections. Occasionally the physical synthesis
tool cannot meet timing closure due to excessive interconnect delays caused by long wires.
This timing closure problem is also known as “wire exceptions.” The wire exceptions are a
serious problem because they have to be fixed manually by adjusting physical placements or
even changing the logic or architectural design. As feature size shrinks, the number of wire
exceptions (following the number of wires) is expected to increase exponentially [Ron01],

suggesting that a new system-level design methodology is becoming necessary.

1.2.2 Power Dissipation

Power consumption has received much attention recently because of growing demands for
wireless and portable electronic appliances. The three main sources of power dissipation

in a CMOS circuit (Pjq) are the switching loss, the direct-path short-circuit current, and

CHAPTER 1. INTRODUCTION 7

the transistor leakage current, corresponding to the three terms in Equation 1.1 [CSB92].
Piotar = pt(CL-V - Vaa- far) + ITsc-Vaa + Ticakage - Vad (1.1)

The first term py (CL -V - Vyq - fere) represents the switching loss, in which C7, is the
sum of the interconnect and gate capacitances, Vyq is the supply voltage, V is the voltage
swing, fe is the clock frequency, and p; is the transition probability. In most CMOS design,
the voltage swing V' and the supply voltage V 4 are identical. The second term Ig. - Vyqy
represents the short-circuit power loss, in which I, is the short-circuit current. The third
term ljeqkage - Via Tepresents the loss caused by leakage current, in which Ijeqpage is the
CMOS leakage current.

Among all these terms, interconnect switching loss represents the most important power
loss in deep submicron design. In general, the interconnect switching loss may be mitigated
by lowering (or dynamically adjusting) supply voltage, switching frequency, or by reducing
interconnect capacitance. At the architectural design phase, there is a tradeoff among area,
system performance and power consumption [FHR99]. For instance, multiple functional
units running in parallel at a sub-threshold voltage level can achieve the same performance
as a single functional unit running at a nominal voltage but effectively consume much
less power [Bha94]. At the physical design phase, power consumption can be reduced by
minimizing interconnect wirelength and wire congestion using different floorplan or different

placement and routing algorithms.

1.2.3 Reliability and Manufacturing Yield

Interconnect affects chip reliability and manufacturing yield in a variety of ways, such as
process-induced damage, electromigration, and bridging defects caused by particle contam-
ination. As feature size shrinks, long interconnect can create excessive static charge buildup
at the gate during the ion and plasma implant processes, causing permanent damages to the
gate oxide. This is known as process-induced damage [GM92]. For a given manufacturing
process, a process-induced damage rule (also known as antenna rule) is used to define the
maximum ratio of interconnect area to transistor gate area.

Electromigration is caused by the excessive transport of the metal atoms when an elec-
tric current flows through an on-chip interconnection for a prolonged period of time [Bla69].

Aluminum is especially vulnerable to electromigration due to its low melting point. The

CHAPTER 1. INTRODUCTION 8

problem can be alleviated by adding alloy elements (e.g. copper), blocking the grain bound-
ary diffusion path. Another related problem is the migration of silicon into aluminum at
the metal contacts, known as contact electromigration, which arises when the silicon atoms
diffuse into aluminum at the interface area where the void created by the migrating sili-
con is filled by aluminum. In general, both reliability and manufacturing yield decreases
with longer interconnection and with higher current density. Recently, researchers have
developed models predicting the manufacturing yield based on the interconnect wirelength
estimation and layer assignment [CdGO1]. The manufacturing yield estimation function

may also be used in the CAD tools to drive the physical layout [Isr00].

1.2.4 Signal Integrity

In the past chip designers could tape out designs without bothering with signal integrity
closure. However, skipping signal integrity analysis is no longer an option below 0.13-micron
process [Pol]. As the design shrinks, the reduced wire spacing results in larger intercon-
nect cross-sectional aspect ratio. Consequently, the cross-capacitance and cross-inductance
between neighboring wires would create more coupling noise, significantly undermining the
signal integrity. As CMOS gates are voltage driven, when the coupling noise caused by the
aggressor wire exceeds the noise margin in the wvictim circuit, the entire system becomes
unreliable.

Signal integrity can be improved by increasing wire spacing or by adding ground wires
between adjacent signals. Nevertheless, these techniques cannot be used in congested rout-
ing areas because there is no room to increase wire spacing or to add ground wires. Hence,
it is important to spread the wire density evenly as much as possible to avoid congestion

hotspots.

1.3 Our Work

1.3.1 Motivation

In the traditional VLSI design flow, there are three separate and distinct optimization

phases: architectural optimization, logic optimization and physical optimization (Figure 1.8).

CHAPTER 1.

Revise
If does not meet
requirements

Revise
If functionally
incorrect

Revise

If does not meet
die size,

power,

cycle time
targets

INTRODUCTION

Product
Requirements

Architecture
Specification

Architectural
Modeling

Design Entry

Functional
Simulation

Logic Synthesis

Circuit Design

System
Partitioning &
Integration

Floorplanning

Placement &
Routing

Actual Tuning
Extraction

Die Size?
Power?
Cycle Time?

Figure 1.8: Traditional Design Flow

Architectural Optimization

Logical Optimization

Physical Optimization

CHAPTER 1. INTRODUCTION 10

A VLSI design project starts from the architectural design phase, then proceeds to
the logic and circuit design phase, and finally to the physical design phase. If design
specifications or requirements cannot be met at some point, the project may need to roll
back to the previous design phase.

This style of design methodology is analogous to the waterfall model in software design,
where requirements analysis, architectural design, detailed design, coding, testing and inte-
gration are separated into distinct phases [Roy70]. The software waterfall model is risky in
a large and complicated project because it does not sufficiently examine the design details in
the early development cycle. As a result, design problems are sometimes uncovered only in
the implementation phase when any major changes are extremely costly [Ber97]. In fact, the
waterfall model has already been replaced by the rapid prototyping model and other related
models, in which programmers build quick prototypes to minimize design risks [Gom83].

Similarly, it is also much cheaper to make changes in a VLSI design in the early design
phases. As the design progresses, the costs and lost revenues associated with a major
redesign increases exponentially (Figure 1.9). Sometimes late changes are so costly that
the entire market opportunity window is lost. To avoid costly and time-consuming chip
redesign, it is becoming crucial to obtain an accurate estimate of performance, cost and
power consumption in the early design stages and apply these estimates to avoid expensive

redesign later on [FHO1].

1 hour ($5,000)
System Level Design

1 week ($5 million)
Register Transfer Level Design

3 months ($100 million)
Chip Level Design

Figure 1.9: Lost Revenue

CHAPTER 1. INTRODUCTION 11

1.3.2 A Priori Interconnect Models

In this research, we propose an interconnect-driven floorplanning framework, in which de-
signers can build fairly accurate prototypes evaluating system cost, performance, power
consumption and other design parameters. As interconnect is becoming the pre-dominant
factor in determining all these design parameters, we have developed models to characterize
the interconnect properties and examined their architectural impacts.

We have developed three statistical, a priori models — a wirelength distribution model,
a wire congestion model and a processor performance model — in our study. Our wirelength
distribution model is an extension to the Davis’ model [DDM96], whereas our proposed wire
congestion model and interconnect-driven processor performance model are derived based
on probability theory. The details of these three models are discussed in Chapters 2, 3 and
4, respectively.

An inherent limitation of statistical models is that while these models may accurately
predict interconnect properties (e.g. wirelength) for the majority of the wires, they in-
evitably over-estimate or under-estimate interconnect properties for some of the wires. This
is probably unavoidable due to the lack of information in the early design stages. As design
progresses, on-line and a posteriori interconnect models can be used in conjunction with a

priori interconnect models to improve modeling accuracy [Str99].

1.4 Organization of this Dissertation

e Chapter 1 introduces the effects of interconnect in deep-submicron era and discusses

our research objectives.
e Chapter 2 presents a generalized wirelength distribution model.

e Chapter 3 presents an interconnect congestion model and describes a floorplan algo-

rithm that uses the congestion model.

e Chapter 4 presents a processor performance model that takes interconnect overhead
into consideration. An upper bound on the optimum issue width (based on intercon-

nect overhead) is described and derived in this chapter.

e Chapter 5 introduces the IPLAN floorplanning framework, which incorporates the

interconnect models described in the previous chapters as well as a number of design

CHAPTER 1. INTRODUCTION 12

tools previously developed in our research group. A case study using Lexra [.X4380

is presented to show how the floorplanning framework works.
e Chapter 6 presents the conclusions and discusses about the future work.

e Appendix A shows the derivations of some structural wirelength distributions dis-

cussed in Chapter 2.

Chapter 2

Wirelength Distribution Model

Interconnect wirelength is the most important parameter in determining interconnect de-
lay, power loss, reliability and signal integrity. By examining the wirelength distribution
of design alternatives, chip designers can more effectively perform architectural tradeoffs,
taking the effects of interconnections into consideration [HF00]. This chapter introduces a
wirelength distribution model, which is one of the three interconnect models used in the
IPLAN floorplanning framework [HSF01].

2.1 Introduction

This introduction section provides the background of the wirelength models developed by
other researchers. Sutherland and Oestreicher [SO72] were the first researchers to deter-
mine an upper bound of interconnect wirelengths. However, their estimates were overly
pessimistic because their model was based on a pure random placement. However, con-
nected blocks are usually placed in close proximity by commercial place-and-route tools.
Donath [Don79, Don81] used Rent’s Rule [LR71] to derive a tighter upper bound on the
expected interconnect wirelength based on a two-dimensional hierarchical placement. Us-
ing a similar approach, Masaki and Yamada [MY87] derived the expected interconnect
wirelengths for various 2-D and 3-D system packaging structures. Sastry and Parker [SP86]
showed that the wirelength distribution in gate arrays follows a Weibull distribution. Later,
Gura and Abraham [GA89], Pedram and Preas [PP89], and Stroobandt [Str96] modified
and further enhanced the model.

Recently, Davis et al. [DDM98] constructed a wirelength distribution model based on a

13

CHAPTER 2. WIRELENGTH DISTRIBUTION MODEL 14

non-hierarchical placement. This model is significant because it shows that the wirelength
distribution can be derived without explicitly using hierarchical partitioning. Furthermore,
the wirelength distribution appears to be more accurate than the previous models for long
wires. In our research, we extend Davis’ model to investigate the effects of aspect ratio and
routing obstacles on interconnect wirelength.

The number of terminals (7") and the number of gates (V) in a VLSI design are related

by a simple empirical formula, known as Rent’s Rule [LRT71].
T = kNP (2.1)

In this equation, k is the average number of terminals per gate and p is the Rent’s
constant. The Rent’s constant can be determined empirically and is found to be between
0.5 and 0.75 [Bak90]. Davis et al. investigated a square array of N gates with V'N rows
and v/N columns. The horizontal and vertical gate pitches are both equal to one unit, so
the aspect ratio of the entire array is one. A continuous interconnect density function i(l)

is defined such that the number of interconnects of length between [= a and | = b is:

b
/ i(l)dl (2.2)

The continuous interconnect density function i(l) consists of three components: a gate
pair structural distribution function M(l), a gate pair connection probability Ic.,(1), and a

normalization factor T.
i(l) = FM(l)Iexp(l) (2.3)

The gate pair structural distribution function M (1) can be found by inspection [DDM98],

or more easily by using moment generating polynomials [Str96].

L _2VN2+2Nl if1<I<VN
M(l) = @D it VN <1<2VN (2.4)
0 otherwise

Based on Rent’s Rule, Feuer [Feu82] showed that the gate pair connection probability
Iczp(l) in a two-dimensional array is proportional to [2P~%, The same result was also derived

by Davis et al. [DDM98]. According to Donath [Don79], the total number of interconnects

CHAPTER 2. WIRELENGTH DISTRIBUTION MODEL 15

is akN (1 — NP~!). The constant factor « is equal to f/(f + 1), where f is the average
fanout of the system. The normalization factor I can be found by integrating i(l) over the
entire range of wirelength.

r_ akN(1 — NP~1) (2.5)

JPN M)zl

Davis’ model assumes a square array of gates, but in practice many blocks cannot be
designed and placed with unity aspect ratio. Moreover, there can be many routing obstacles
in real designs. It is therefore useful to investigate the effects of aspect ratio and routing
obstacles on wirelength distribution. Furthermore, the horizontal and vertical gate pitches

can be very different, and it would be useful to examine the effects of the gate pitches.

2.2 Wirelength Distribution Model for Rectilinear Blocks

2.2.1 Effects of Block Aspect Ratio

Consider a rectangular block with m columns and n rows. The total number of gates is
N = mxn, and the dimensions of the entire block are X and Y units. Hence, the horizontal
gate pitch is % units, the vertical gate pitch is % units, and the average gate pitch A is

% units. Without loss of generality, we assume X > Y.

A Y A
n

4

A
Ve

3>

A
Y

X

Figure 2.1: Rectangular array of m x n gates

We follow a similar approach as described in the previous section. We first derive the
structural distribution function M (/) and then calculate the gate pair connection probabil-

ity Io.p(l). For each row of gates, we define the horizontal discrete structural distribution

CHAPTER 2. WIRELENGTH DISTRIBUTION MODEL 16

function M (l) to be the number of gate pairs with distance [. It can be found by inspec-
tion [Str96].

m ifl=0
My(l)=Q 22D e X cj < x (2:6)
0 otherwise

Similarly, for each column of gates, we can define the vertical discrete structural distri-

bution function M, (I). The expression is similar to M (l).

n if 1 =0
M) =< 200 Y <<y (2.7)
0 otherwise

Since m and n are large numbers, we can approximate these discrete structural distribu-
tion functions to be continuous. The continuous distribution functions are realistic because
the I/O ports may be located anywhere in the gates and the interconnect wirelengths are
usually not equal to multiples of the gate pitches. The continuous structural distribution
function M (I) is simply the convolution of M;(l) and My(I). To simplify the expression
of M(l), we add a constant scaling factor XY /2N. This constant is later absorbed in the

normalization factor T.
Xy [t
M(l) = —/ My (z)My(l — z)dx (2.8)
2N J,

Evaluating the definite integral from x = 0 to x = [, we get the following expression for

P (X +Y)2+2XYl ifI<Y

—Y?2 24 X2 ify <I<

M(l) = (X};fj);XY + 53 HyYy <I<X (2.9)
R HfX<I<X+Y
0 otherwise

The gate pair connection probability Ic;,(1) is the expected number of interconnections
between a pair of gates that are [units apart. In order to calculate I..,(l), we follow Davis’

approach and define block A, block B, and block C, as shown in Figure 2. In general, the

CHAPTER 2. WIRELENGTH DISTRIBUTION MODEL 17

horizontal and vertical gate pitches do not have to be identical, but they are shown to be
the same in the diagram. Block A represents a single gate in the rectangular array; block
C consists of all the gates with a distance [away from block A; block B consists of all the

gates between block A and block C.

Block A Block B Block C
\/ N2

10 21...[{I-1]]| |
1102 (|- [[I-1]l] |

Figure 2.2: Definitions of Blocks A, B, and C

Ny, Np, and N¢ are the number of gates in block A, B, and C, respectively. Using
Rent’s Rule, Io;p (1) can be determined as below [DDM98].

Iezp(l) - No = kE((Ngo + Np)P + (N + N¢)P — NP — (N4 + Np + N¢)P) (2.10)

The number of gates in block A (Ny4) is always 1. For short interconnects (I < Y),
Np is proportional to {2 and N¢ is proportional to [. For longer interconnects (I > Y),
Np is approximately proportional to [instead of I? and N¢ is approximately a constant.
Using binomial expansion, I..,(l) is proportional to [??~* for short interconnects and [P~2

for longer interconnects. Thus, i(I) can be determined by the following equation.

M ()21 if <Y
i) =4 TMI)(Y -)P2 fY <I<X+Y (2.11)
0 otherwise

For Y <1< X 4+, a scaling factor Y?~2 is added to ensure that Ioyp(l) is continuous

at [=Y. As before, the normalization factor I can be found by integrating i(l) over the

CHAPTER 2. WIRELENGTH DISTRIBUTION MODEL 18

entire range.

. akN(1 — NP~1)
Y M@ezeAdl + (XYY MY - DP-2dl
A Y

(2.12)

Please note that the interconnect density function i(l) does not depend on the gate
aspect ratio. Equations 2.9 and 2.11 show that the wire distribution function has three
distinct regions: (a) short wires (I <Y'), (b) medium wires (Y <[< X), and (c) long wires
(X <1). If X =Y = +/N units (one unit is equal to one gate pitch), there is no medium
wire, and our model is similar to Davis’ model. The only difference is that I.,,(l) is equal
to (Y -1)P~2 instead of I?’~* for long wires. However, the two models are quite different for
non-unity aspect ratios. In particular, the average wirelength estimations are very different.

The average wirelength [, is derived in Equation 2.13.

) 1
O Yiwa
_ Sy M@OE3d+ [MY 1P ldl

Sy M@yeze=tdl + [MY - D=2l

o~
IS
<

(2.13)

If we assume that I, (1) is equal to [?’~* for all wires (as in Davis’ model), the estimated
average wirelength estimate decreases with higher aspect ratios. This is incorrect as it
contradicts with our experimental results. On the other hand, we set I.4,(!) to be 12p=4 for
short wires and P2 for medium and long wires in our model. There are relatively more
long wires in our model and the average wirelength increases almost linearly with the aspect
ratio.

Figure 2.3 compares the average wirelength estimates derived from both models. In
this graph, p is 0.67, X is one unit, and the total area is 10,000 square units. Assume
that the area of the rectangular block is fixed. Figure 2.4 shows the theoretical wirelength
distributions of the block with various aspect ratios. As before, the Rent’s constant p is set
to 0.67.

For short wires, the slope of the log-log graph is roughly equal to 2p—3 (or —1.66) because
M (1) is roughly proportional to I (according to Equation 2.9) and I,y (l) is proportional to
[2P=4, Similarly for medium wires, the slope is roughly equal to p — 2 (or —1.33) because
M (1) is roughly constant and I.4, (1) is proportional to [P~2. For p = 0.67, the two slopes are

quite similar and the two regions may not be very distinctive in the graph. The distribution

CHAPTER 2. WIRELENGTH DISTRIBUTION MODEL 19

6 - Our Model
55 - . U N PSP Davis Model

Average Wirelength (units)

4 T T T T T T T T T T LI T LI T LI T

N © «~ & 9O « ™ ¥ o 0w % ®© N ©
o o ~ ~ « ™ o < 0w v © ©

© ©
N <

Aspect Ratio

Figure 2.3: Average Wirelength Estimations vs Aspect Ratio

tails off when the wirelength is near X + Y.

It is apparent that rectangular blocks with higher aspect ratios contain more long wires,
but the wire density function i(l) for short wires remains roughly the same. The number of
short wires far exceeds the number of long wires, and the small increase in the number of

the long wire does not substantially affect the wire distribution of the short wires.

2.2.2 Effects of Routing Obstacles

The effects of routing obstacles on interconnect wirelength are similar to the effects of aspect
ratio. Routing obstacles spread out connected gates and may cause some long interconnec-
tions. As in the case of high aspect ratios, obstacles are expected to increase the number
of long wires without significantly affecting the number of short wires. Figure 2.5 shows
three simple routing obstacle examples. In Figure 2.5(a), the routing obstacle is located
at the corner of the block; in Figure 2.5(b), the obstacle is located inside the block; in
Figure 2.5(c), the obstacle is located on the edge of the block.

First, we examine the L-shaped block in Figure 2.5(a). The structural distribution
function M (l) shown in Table 2.1 may be derived using the moment generating polynomial
technique (Appendix A). The gate pair connection probability I.;,(l) is derived as shown

in the previous section. I.;,(l) is proportional to [??~* for short wires (I < X —Y) and is

CHAPTER 2. WIRELENGTH DISTRIBUTION MODEL 20

Aspect Ratio=1
—— Aspect Ratio=3
- ——-Aspect Ratio=6
—— Aspect Ratio=9

log(i(l))

Higher Aspect Ratio

log(l)

Figure 2.4: Wire Density Function i(l) for Various Aspect Ratios

proportional to IP~2 for long wires (I > X —Y). The normalization factor I' can be found

by integrating i(l) from X to 2X.

Table 2.1: Structural Length Distribution Function for the L-shaped Block!

| Wirelemgth (I) | M() for the L-shaped Block
I<X-Y %lB—2Xl2+4X2_§Yz—1l
X-Y<I<Y - (X-V*+ 6Xz—12X6Y+6Yz—1l 3—X+Y+3X;Y—9XY2+5Y3
Y <1<2X -2Y —1P+ 2y - X))+ 6X2—12XY+11 1 X-X+43X7 Y- IXVI167"
2X —2Y <1< X —%l3 ;Y2 4 6XY 3X1—6Y +1l 1 X aXFY - 9X y+3Xyz+2y5
X <I<2Y —1P 4+ 2X - V)P 4 88 15)3(2*65”“1 4+ LX® e 15;(TY 13XV 12Y°
2V <I1<2X -Y “1 4 2(X — Y)I? 4 BXV=30X"¥1; | LIX"—2X+3V =I5 X V8 XV 27"
2X -V <I<X+Y 13 -YI?+ 12XY—6)§Z+6YZ—11 + 3X’+Y—3X:Y—3XY1_Y5
X+Y<I<2X —§+Xl2—2X2l—|— 8X3—62X+1

IWe assume X < 2Y in this table.

As the expression of the wire distribution is quite complicated, we would like to approx-
imate the L-shaped block by a rectangular block for interconnect wirelength estimation so
that the wirelength distribution can be more easily calculated in software by the CAD tools.
First, we examine the wire distribution of an L-shaped block and compare the L-shaped

block with a rectangular block of the same area (X? — Y?2). In order to match the longest

CHAPTER 2. WIRELENGTH DISTRIBUTION MODEL 21

X X X

(a) L-shaped Block (b) O-shaped Block (c) C-shaped Block
Figure 2.5: Routing Obstacle Examples

wirelengths in these two blocks (I = 2X), the aspect ratio of the rectangular block is

set to §f§ Figure 2.6 compares the two wirelength distributions and shows that the two

distributions are almost identical. For long wires (I ~ 2X), the wire density function i(l)
of the rectangular block is twice the wire density function of the L-shaped block. This is
because there are two “diagonals” in the rectangular block, and the connections across these
two “diagonals” can both constitute long wires. On the other hand, there is only one long
“diagonal” in the L-shaped block.

Likewise, we can derive the wirelength distribution functions of the O-shaped block
in Figure 2.5(b) and the C-shaped block in Figure 2.5(c). The derivations are shown in
Appendix A. For Y < X/2, the theoretical wirelength distributions of these two blocks are
both very similar to the L-shaped block. As in the rectangular block, the numbers of long
wires (I = 2X) in the O-shaped and C-shaped blocks are about twice the number of long
wires in the L-shaped block because there are two long “diagonals” in the O-shaped and
C-shaped blocks. For Y > X/2, the maximum wirelength in C-shaped block is equal to
X 4+ 2Y, which is longer than the maximum wirelengths in the L-shaped and O-shaped
blocks. In general, it is better to place routing obstacles near the corner in order to reduce

the number of long wires.

2.3 Experimental Results

Our model was verified with some previously published data and three other design exam-

ples. The three design examples are Cordic, Multiplier, and IDCT.

CHAPTER 2. WIRELENGTH DISTRIBUTION MODEL 22

Square Block (Aspect Ratio=1)

Rectangular Block (Aspect Ratio=9)
- ——-L-shaped Block (Y=0.8X)

log(i(1))

Rectangular and

Square Block —»- <~ L-shaped Blocks

log(l)

Figure 2.6: Wirelength Distributions of L-shaped and Rectangular Blocks

Table 2.2: Experimental Results on Average Wirelength Estimation

Design No. of | No. of P Area in mm?
gates conns for aspect ratio=1
Cordic 2151 3384 0.75 0.28
Multiplier 6367 16050 0.72 1.3
IDCT 12666 35193 0.63 4.2

The Multiplier and Cordic designs were synthesized using Synopsys Design Compiler,
and the IDCT design was synthesized using Synopsys Behavioral Compiler. The netlists of
these designs were generated for TSMC 0.35um technology. The floorplanning, placement,
and routing of the designs were performed by Epoch from Duet Technologies, and the
wirelength extractions were done by Cadence Dracula. In this section, we first investigate

the average wirelength and then examine the wirelength distribution.

2.3.1 Average Wirelength Model

Our average wirelength estimates were derived from Equation 2.13, and were then compared
with Donath’s estimates [Don79] using the experimental data cited in his paper. In Donath’s

experimental data, the aspect ratios of his blocks are all approximately one. The results

CHAPTER 2. WIRELENGTH DISTRIBUTION MODEL 23

are shown in Table 2.3. Although our estimates are still higher than the actual data, they
are substantially more accurate than Donath’s estimates. For example in Graph B, the
estimation error is reduced by about half. Since the aspect ratios are close to one, our
estimated average wirelengths are similar to Davis’ model. We also compared our average
wirelength estimation with Stroobandt’s model [Str96] and the two results are comparable.
Our estimation is better in Graphs C and F, and worse in Graphs B, D, and E (Graph A
is not available in [Str96]).

Table 2.3: Experimental Results on Average Wirelength Estimation

Graph | No. of | No. of P Donath’s | Stroobandt’s Our Actual
gates conns formula estimate estimate | length

A 60 100 0.67 2.76 - 2.28 1.29

B 528 1007 0.59 4.02 2.88 3.09 2.15

C 576 1111 0.75 5.26 4.13 3.92 2.85

D 671 1670 0.57 4.07 2.89 3.13 2.63

E 1239 2687 0.47 3.76 2.45 2.97 2.14

F 2148 7302 0.75 7.37 5.74 5.29 3.50

Next, we compare the theoretical average wirelength with the actual average wirelength
in the Cordic design for a number of aspect ratios. We calculate the wirelength density
function and determine from the slope of the function that the Rent’s exponent p is around
0.72. As shown in Figure 2.7, the theoretical results closely match the actual data for a wide
range of aspect ratios. The average wirelength increases when the aspect ratio increases,
and the slope of the graph is around 2.5um.

We did the same comparison for Multiplier, and the results are shown in Figure 2.8.
The theoretical results are also close to the actual data. However, if we assume the total
area of the block is fixed and then use the aspect ratio to estimate the average wirelength,
the estimates are not as accurate (Figure 2.8). The reason is that the area of Multiplier
changes considerably with different aspect ratios (Figure 2.9), which is different from the
Cordic example in which the area remains roughly constant from 0.25 aspect ratio to 6.0

aspect ratio.

CHAPTER 2. WIRELENGTH DISTRIBUTION MODEL

110

100 |
90 1|
80 |
70

60

5 0 T T T T

24

¢ Actual
——— Our Model

Average Wirelength (microns)

4
Aspect Ratio

Figure 2.7: Average Wirelength vs Aspect Ratio (Cordic)

140

130
120

¢ Actual
—a— Qur Model

-- 4 - Constant Area

110
100
90
80

Average Wirelength (microns)

70

—

3
A

60 ‘ ‘ ‘

Aspect Ratio

Figure 2.8: Average Wirelength vs Aspect Ratio (Multiplier)

CHAPTER 2. WIRELENGTH DISTRIBUTION MODEL 25

18 ¢
16 ¢
1.4 - . .
1.2 -

0.8 -
0.6 -
0.4 -
0.2 -

Area (square mm)

Aspect Ratio

Figure 2.9: Area vs Aspect Ratio (Multiplier)

2.3.2 Wirelength Distribution Model

In this section, we examine the effects of aspect ratio and routing obstacles on wiring
distribution. In order to calculate the wirelength density of a design, we need to construct
a histogram of all wirelengths. Since the number of short wires is substantially higher than
the number of long wires, it is sensible to have larger histogram bins for long wires and
smaller histogram bins for short wires. Thus, our histograms are constructed in logarithmic
scale. If a certain histogram bin contains no wire, this bin is then merged with an adjacent
bin and the wire density is distributed evenly between the two bins. This is to reduce the
number of bins and minimize the noise effects when the number of wires in a bin is too
small.

Figure 2.10 shows the wirelength distribution of IDCT with unity aspect ratio. Our
theoretical wire density is similar to Davis’ model, and it describes the actual wire density
accurately. We change the aspect ratio of IDCT and measure the new wire density function.
The general shape of the graph is same as before, but the number of long wires increases.
The wire density is displayed in Figure 2.11. We also show the previous theoretical wire

density in the same graph for comparison. To highlight the differences between the two

CHAPTER 2. WIRELENGTH DISTRIBUTION MODEL 26

) 3
o
S
/

1000 .,

ron

100 = Actual

|
o
/F
u
-
L

10 - Model

Wire Density
(number of wires per mic

10 100 10 10000
0.1 - ‘\\

0.01

0.001
Wirelength (microns)

Figure 2.10: Wirelength Distribution with Unity Aspect Ratio (IDCT)

density functions near 1000um, the graph is drawn in semi-log scale instead of log-log scale.

Similarly, we add a routing obstacle in IDCT to make it an L-shaped block, as in
Figure 2.5(a). The X and Y dimensions are approximately 3.2mm and 2.3mm, respectively.
As discussed in the previous section, the wire density can be approximated by a rectangular
block with aspect ratio ~ 6. Figure 2.12 shows the wire density of the L-shaped block. We
also add the previous two theoretical wire densities (aspect ratio=1, and aspect ratio=6)

for comparison. As expected, the wire densities in Figure 2.11 and 2.12 are very similar.

CHAPTER 2. WIRELENGTH DISTRIBUTION MODEL

10

'E . l‘x\

g 9 = Actual Data

[8 - \

E \\ _ 0=
3‘ 3 7 - 1 \ Model (Aspect Ratio=6.0)
z’ 2 g .\ Model (Aspect Ratio=1.0)
@ g 5 | a \ .
(o \
23 4 :
=% 3 .

3 5]

S

2 1] .

= 0 ‘ ' - e _

100 1000 10000

Wirelength (microns)

Figure 2.11: Wirelength Distribution with Aspect Ratio = 6.0 (IDCT)

10

= Actual Data

Model (Aspect Ratio=6.0)

6 \\ Model (Aspect Ratio=1.0)

Wire Density
(number of wires per micron)
o

100 1000 10000

Wirelength (microns)

Figure 2.12: Wirelength Distribution with Routing Obstacles (IDCT)

CHAPTER 2. WIRELENGTH DISTRIBUTION MODEL 28

2.4 Summary

This chapter presents a generalized interconnect wirelength distribution model and inves-
tigates the effects of aspect ratio and routing obstacles on interconnect wirelength. This
model is important because interconnect wirelength is the most important parameter in
determining the performance and power consumption of a chip in deep submicron design.
The wirelength distribution (Equation 2.11) is divided into three wirelength regions: short
wires (I <Y'), medium wires (Y <! < X), and long wires (X <) where [is the wirelength,
X and Y are the width and height of the rectangular block. As described in Chapter 1,
long wires can affect chip performance and cause wire exceptions during physical synthesis
process. On the other hand, the power consumption is usually determined by the average
wirelength (or total wirelength).

The wirelength distribution depends primarily on the Rent’s exponent, the dimensions
of the blocks, and the total number of gates in the block. To the first order approximation,
the wirelength distribution is not sensitive to the number of rows or columns of gates in
the block, or the aspect ratios of the gates. In order to accurately model the wirelength
distribution, we determine that it is also important to estimate the effects of aspect ratios
on the synthesized area. The area is usually smaller with unity aspect ratio, but the precise
effects depend on the type of synthesized block, the synthesis tool and the cell library used.
In general, these effects appear to be more serious for a datapath than for a controller block.
As shown in the Multiplier example, if the changes in the synthesized area are not taken
into consideration, the wirelength distribution results can be inaccurate when the aspect
ratio is not unity. This is because the size of a datapath can be significantly larger when it

is synthesized into an “inefficient” aspect ratio.

Chapter 3

Wire Congestion Model

Besides long interconnections, wire congestion is another main contributor of excessive
wire delay and power loss. This chapter introduces a generalized statistical wire congestion
model and a heuristic floorplanning algorithm that minimizes the wirelength and congestion
in a floorplan [HF99]. The wire congestion model is described in Section 3.2, while the

floorplanning algorithm is described in Section 3.3.

3.1 Introduction

As feature size shrinks, wires are becoming narrower and are placed closer to one another.
At the same time, they are also becoming taller in order to reduce resistivity. The net
outcome is that the coupling effects between neighboring wires (due to cross-capacitance
and cross-inductance) are rising. To avoid excessive coupling, critical wires have to be
placed farther apart or be shielded with ground wires [Naf99]. Nevertheless, this would
not be possible when routing channels in a floorplan are already overly congested. Thus,
interconnect congestion affects not only routability but also the area, performance, power
consumption, and signal integrity of a design.

Congestion may be a global measure, such as excessive nets crossing a cutline between
two partitions, or a local measure when the track density is too high within a routing
channel. Congestion based algorithms have proved effective in global routing [Nai87, HS90,
LSW94] and global placement [PBS98], in reducing total chip area, improving wireability,
and predicting total wire length in the early design stages. In a typical placement tool,

congestion is modeled by a rat’s nest [She95] or similar connectivity visualizations [Leb83].

29

CHAPTER 3. WIRE CONGESTION MODEL 30

For simplicity, these congestion visualization schemes do not model via minimization [Hsu83,
NMN87, RKN89] and routing obstacles. As a result, they may under-estimate routing

congestion in some regions and over-estimate routing congestion in some other regions.

3.2 Wire Congestion Model

3.2.1 Problem Formulation
Simplified Congestion Model

In the simplified congestion model, a chip layout is modeled by a grid graph [She95]. The
grid graph G = (V, E) contains vertex at each grid point as well as horizontal and vertical
edges connecting adjacent vertices. The horizontal and vertical spacings between two grids
are denoted by A, and A, respectively. The layout may be considered as a collection of

Ay x Ay rectangular tiles arranged in a w x h array.

A0

| || || ||
B (3,2)

Figure 3.1: Routing between A(0,0) and B(3, 2)

Now, consider a route from point A at (0,0) to point B at (m,n). We assume there is no
routing obstacle between A and B in this section. At each grid point, the route can either
go horizontally or vertically. The shortest distance between A and B is m + n, which is
the Manhattan distance between the two points. If the routing is limited to the Manhattan

distance, there are (mnt”)

different ways to route from A to B. The combination is derived
from the fact that m tracks out of the m +n tracks are horizontal. As shown in Figure 3.1,
there are (‘;’) = 10 different ways to route from A to B for m = 3 and n = 2.

Suppose all possible routes are equally probable. Let P, be the probability that the

CHAPTER 3. WIRE CONGESTION MODEL 31

route passes through the point (z,y). Since there are (m;y) different routes from (0,0) to

(x,y) and (m?fj;*y) different routes from (x,y) to (m,n), we get:

(1) - (")

e/ (3.1)

Pwy = (m+n)
m

B (m,n)
Figure 3.2: Routing Probability through a Point

Similarly, let P,,’ be the routing probability that the route passes through the horizontal
track from (z,y) to (z + 1,y), and P,," be the routing probability that the route passes
through the vertical track from (x,y) to (z,y + 1). We get the following equations.

() - (ki)

Py = (mﬁ)"”‘l (3.2)

ny” = (3.3)

In Figure 3.1, six out of ten possible routes pass through the horizontal track from (0, 0)
to (1,0). Thus, Py’ is equal to 0.6. The routing probabilities of all the horizontal and
vertical tracks are shown in Figure 3.3. Suppose M wires are connected between A and B.
The routing densities are defined as the product of the number of wires and the routing
probabilities. Let Dy (z,y), Dy (z,y) be the horizontal and vertical routing densities at
(z.y). We get the following equations.

DH((II,?/) =M - ny, (3.4)

CHAPTER 3. WIRE CONGESTION MODEL 32

DV($7 y) =M - Pmy” (35)
A (0,0 0.6 0.3 0.1

(0.0) = > > Il >
0.4 0.3 0.2 0.1

vl 03 vl 04 vl 0.3 v

> > 3 |
0.1 0.2 0.3 0.4

v 01 \ 4 03 v 06 v

| d | | »M B (32

Figure 3.3: Simplified Congestion Model Example

The simplified congestion model ignores many practical considerations. The following
sub-sections address the issues of via minimization, routing between macro blocks, multi-pin

nets, multiple metal layers, and routing obstacles.

Via Minimization
As described in Chapter 1, the interconnections usually all run in the same direction within
a layer and perpendicularly between adjacent layers. This methodology supports many
compact and efficient routing algorithms, and also serves the purpose of minimizing cross
couplings between adjacent layers. To make a 90° turn (or bend) in an interconnect routing,
a metal contact (also known as via) is needed to connect two perpendicular interconnections
from one metal layer to another metal layer. Most routing algorithms minimize the number
of vias because vias can cause substantial interconnect delay [Hsu83, NMN87, RKN89]. Vias
between metal layers for aluminum wires are made of tungsten, and are fairly resistive. For
example in a 0.25-pm process, the resistance of a M — Ms via is about 5{2 and the resistance
of a via from My down to the substrate can be more than 20Q! Considering a 1-pum-wide,
1-mm-long Mj line has a resistance of only 20€2, these resistances are very high [Ron01].
In Figure 3.1 there are ten possible ways to route from (0,0) to (3,2) with the shortest
path length. Let W, be the number of routes with n vias (90° bends). In this example,
only two routes have a single via. Thus, W; is 2 by definition. Similarly, Wy is 3, W3 is 4,
and Wy is 3. In order to model via minimization, routes with more vias are assumed to be
less probable than routes with fewer vias. We use a parameter o between 0 and 1 to model

this behavior. Let Prob{n vias} be the probability that the route has n vias. We define «

CHAPTER 3. WIRE CONGESTION MODEL 33

as below.

Prob{n + 1 vias} . (Wn+1>

Prob{n vias} W, (3.6)

For simplicity, « is assumed to be constant for all n. When « is 1, all routes are equally
probable and the model is identical to the simplified congestion model. When « is 0, only
routes with the minimum number of vias is allowed. In our experiments, « is set to 0 for
busses and very long interconnections, and « is set to 0.5 for local interconnections. These
configurations appear to model our designs fairly accurately.

Figure 3.4 shows the routing probabilities when o = 0, 0.5, and 1. As « gets smaller, the
routing densities near the perimeter of the boundary box get higher. This example illustrates
that the simplified model under-estimates the routing congestion near the perimeter of the
boundary box, and over-estimates the routing congestion in the middle of the bounding

box.

Routing Between Macro Blocks

Suppose there are M wires between block A and block B. Traditional routing algorithms
assume the wires come from the centers of the two blocks. This sometimes creates unrealistic
high congestion near the centers of the blocks. There are several different ways to model
routing densities. In the early design stages, the locations of the pins are unknown and the
pins are modeled to be evenly distributed among all the tiles within the macro block. In
the later design stages, the pins may be assigned to a certain edge and the pins are modeled
to be evenly distributed among all the tiles that cover the edge. Finally, if the exact pin
locations are known, the routing densities may be calculated using the congestion model
between points.

In Figure 3.5, block A is divided into 6 tiles (2 grid lines x 3 grid lines) and block B is
divided into 8 tiles (4 grid lines x 2 grid lines). Assuming that there are M wires connected
between the two blocks. If the end points can be located anywhere within the macro blocks,
there can be 6 x 8 or 48 different combinations of start and end points. Thus, we model each
of these combinations carries M /48 wires. The routing densities for all these combinations

are calculated and then superimposed to give the routing densities.

CHAPTER 3. WIRE CONGESTION MODEL

AQO 05 05 05
os 0 0 05
i 0 3 0 3 = ;i
(a) @ = 0.0 05 0 0 *
B2 e R% Reco

A(0,0). 057 SH 0.38 ‘._0.22_‘.

(b) a =05 0.22 0.16 0.19 043
057

M B (32)

AQO) g 08 03 01
0.4 0.3 0.2 0.1
R0 mod o p03 o
(c)a=10 0.1 0.2 0.3 04
v 0.1 4 03 Y 0.6 !
3 | 3 | »M B (32)

Figure 3.4: Via Minimization Example

34

CHAPTER 3. WIRE CONGESTION MODEL 35

Block A

] __ "Only 6 out of 48 combinations
~i o~ of start and end points are shown.

Block B

Figure 3.5: Wire Congestion Routing between Blocks Example

Multi-Pin Nets

The earlier part of this section focuses on how to model routing congestion caused by two-pin
nets, and this sub-section describes how to model routing congestion caused by multi-pin
nets. A simple way to model multi-pin nets is to decompose them to two-pin nets. There
are a number of approaches to decompose a multi-pin net. One way is to assume all possible
interconnections among the pins are equally possible. Thus, a N-pin net is decomposed into

all possible w two-pin nets, and each two-pin net carries % wires. The number % is

derived from the fact that only (N — 1) out of W

two-pin nets are required to connect
the N points together, so each two-pin net only carries % wires.

If the routing algorithm is known, the congestion model can follow the same scheme to
better predict the congestion. For example, if the actual router uses minimum spanning
trees (MST) to decompose multi-pin nets to two-pin nets [Pri57], the congestion model

should follow the same algorithm and use MST in the decomposition.

Multiple Metal Layers

Most modern chips utilize multiple metal layers for global and detailed routing. Typically,
each metal layer has different metal width and spacing requirements. Assume every metal
layer consists of either all horizontal tracks or all vertical tracks. Now, consider a metal
layer with only horizontal tracks. Let A, and A, be the horizontal and vertical spacings

between 2 grids, W be the metal width, and S be the metal spacing. The number of

CHAPTER 3. WIRE CONGESTION MODEL 36

horizontal routing channels (Ry) at each grid point is:

Dy

Bu =g

(3.7)
Similarly, consider a metal layer with only vertical tracks. The number of vertical routing

channels Ry at each grid point is:

Ay
Ry = m (3.8)
The horizontal and vertical channel supplies of all the metal layers are added together to
obtain the horizontal and vertical channel supplies at each grid point. Routing congestion
occurs when routing density exceeds channel supply, i.e., Dy > Ry or Dy > Ry. When
that happens, the routing channel is treated as a routing obstacle. On the other hand, if
both horizontal and vertical tracks are permitted in every metal layer, the horizontal and

vertical routing channels can be combined. In this case, routing congestion occurs when

Dy + Dy > Ry + Ry.

3.2.2 Algorithm

This section presents a heuristic algorithm to calculate the routing probabilities based on the
statistical congestion model. First, we describe how to calculate the routing probabilities
between two points. The algorithm is later extended to handle routing between blocks and

with routing obstacles.

Routing between points

The routing probabilities of all the tracks between point A and point B can be found by using
the following step-by-step heuristic algorithm. The detailed derivation of the algorithm can
be found in [HF97]. Following the derivation in [HF97], set 5 as in Equation 3.9.

2

B:1+a

(3.9)

Conceptually, the constant 3 is the conditional probability that via minimization algo-
rithm is not active in a routing. When S is close to 0, the routing always tries to go straight

at each point because it “remembers” its previous direction. When f is close to 1, the

CHAPTER 3. WIRE CONGESTION MODEL 37

routing does not contain any state or memory, resembling the simplified congestion model.

Step 1: Set the probability at point A (Pyp) to 1.0.

Step 2: Calculate the probabilities at point A.

Po = Po- 7y
"
Po = Poo- i

Step 3: Calculate the probabilities in the first row.

’

Py = Poo
Py = Py-B- —melo 4 Py - (1-P)
Py = Py fB- P

Step 4: Calculate the probabilities in the second row.

Step 5: Repeat Step 4 for the remaining rows.

Step 6: After all the probabilities have been calculated, do the following to ensure symmetry
between A and B.

Py = 5 [Poy+ Pina)ny))
Pmy, = % [Pwy, + P(m—fv—l)(n—y)l]
Poy" = 3 [Py + Pim-a)(n-y-1)"]

Figure 3.6 shows the routing densities from (0,0) to (3,2) with @ = 0.5 using this
algorithm. The results are almost identical to the exact probabilities shown in Figure 4.

When a = 0 or 1, the results of this algorithm are exact.

CHAPTER 3. WIRE CONGESTION MODEL 38

A (0,0) 0.58 0.38 0.21
SN m—— W
0.42 0.20 0.17, 0.21
v| 021 [v] 024 |y 021 v
> o —
0.21 0.17 0.20 0.42

v| 0.21 w| 0.38 v| 0.58 v
—a——— N B (32

Figure 3.6: Illustration of Wire Congestion Algorithm

Routing between blocks

Suppose there are M wires between block A and block B; block A contains N4 tiles, and
block B contains Np tiles. We can run the above algorithm N4 - Np times to calculate the
routing densities, but the computation can be very slow when N4 - Np is large.
Fortunately, the original algorithm can be modified to calculate the routing densities
between two blocks in a single pass. Instead of setting Pyo to 1.0, F;; is set to NMA for all (i, j)
inside block A. This optimization is valid because routing densities can be superimposed

and summed together.

Routing Obstacles

Routing obstacles are common in VLSI designs. For example, some areas in a chip are
reserved for local routing and cannot be used for global routing. We can model routing

obstacles using the following algorithm.

Step 1: Follow the algorithm described in the previous sub-section but ignore the routing
probabilities going into the routing obstacle.

Step 2: Re-route all the routing probabilities going into the routing obstacles back to the
origin.

Step 3: Let Pp be the sum of all the routing probabilities going into the routing obstacle.
The remaining routing probabilities have to be normalized and divided by (1 — Pp)

to compensate for the “missing” probabilities entering the routing obstacles.

The algorithm is illustrated with an example in Figure 3.7. In Step 1, the routing

probabilities are calculated using the previous algorithm. In Step 2, the routing probability

CHAPTER 3. WIRE CONGESTION MODEL 39

(0.17) going into the obstacle is routed back to the source. In Step 3, all the remaining
probabilities are divided by (1 — 0.17) = 0.83 to compensate for the probability entering

the routing obstacles.

Step 1: Derive the routing probabilities as before.

A (0,0) 0.5 0.17
0.5 0.33
v| 033 _ -
0.33
0.17 0.33 0.33
v| 0.17 0.5
[} >l > B (2,2)

Step 2: Remove the obstacle probabilities.

A (0,0) _05-0.17=0.33

05 0.33
v| 033 _

0.17

<
<

o
[y
~

u >l >M B (22

Step 3: Compensate for the “missing” probability.

A (0,0)
0.6 0.4
04

0.4
0.2 0.4 0.
0.2 06
||

>l »ll B (22

v

Figure 3.7: Tllustration of Wire Congestion Routing Obstacle Algorithm (« = 1.0)

CHAPTER 3. WIRE CONGESTION MODEL 40

3.2.3 Experimental Results

A wire congestion estimator was developed based on the wire congestion model described
in this chapter. This congestion estimator is part of the IPLAN floorplanning framework
described in Chapter 5. The estimator allows users to create, move, modify macros blocks,
and create interconnections among the macro blocks. If the locations of the pins are not
defined, it assumes the pins to be distributed evenly throughout the macro block. If the
locations are defined, it allows direct pin-to-pin connections.

The wire congestion estimator has been tested with a number of chips, and the conges-
tion estimations appear to be accurate. However, it is important to configure the model
correctly, or the results can be incorrect. In this section, we use two real chips to illustrate
how the congestion estimator works and how to configure the model.

The first chip is an 8-bit, 8-tap adaptive FIR filter (Figure 3.8), which encompasses
eight functional blocks: Controller, Datapath, DataShiftReg, CoefShiftReg, DatapathDriver,
Drv, Clk and Counter. Figure 3.8(a) and 3.8(b) show two congestion maps based on two
different configurations, and Figure 3.8(c) shows the M1 metal interconnections of the
actual physical layout. In this case, the congestion estimator only considers the global
interconnections because it reads only the global interconnection netlist. To evaluate the
accuracy and effectiveness of the estimator, we should focus on the global interconnections
between functional blocks, and ignore the local interconnections within each block.

In the first congestion map (Figure 3.8(a)), the congestion estimation is based purely on
the global netlist. The map shows congestion between Datapath and DataShiftReg, which
can also be found in the layout. However, the map also shows some routing congestion
between Controller and DatapathDriver, which does not exist in the actual layout. The
discrepancy is due to the fact that the congestion estimator assumes random pin locations
within the Controller and DatapathDriver blocks. Actually, the pins are lined up between
Controller and DatapathDriver boundary. After defining the correct pin locations (Figure
3.8(b)), the second congestion map predicts the congestion more accurately. It is useful to
allow users to configure or not configure pin locations in the congestion estimator. Usually,
pin locations are not defined in early design stages, and the congestion estimator can provide
a rough congestion estimation. As the design progresses, pin and block locations can be
defined more precisely, and the congestion estimation becomes more accurate.

The second chip is a 16-bit pipelined microprocessor (Figure 3.9), which encompasses
five functional blocks: Controller, DataPath, AddrGen, RegF'ile and Pipeline. Figure 3.9(a)

CHAPTER 3. WIRE CONGESTION MODEL 41

shows the congestion estimation, whereas Figure 3.9(b) shows the M1 interconnection in the
actual physical layout. As in the previous example, we should focus on the interconnections
among the functional blocks and ignore the interconnections within each block. For the
control and data busses, the via minimization parameter («)) should be set as zero because
busses typically have very few vias. The congestion map shows routing hot spots between
AddGen and RegFile, matching the actual layout.

Besides identifying congestion hotspots, the congestion estimation can also be used in
the routing algorithm. In Figure 3.9b, the router uses minimum pitches to connect the wires
between the Controller and Pipeline blocks, but the congestion estimation map correctly
predicts that the wiring densities between these two blocks are very low. A “congestion
conscious router” can use a larger wiring pitch for these interconnections based on the
congestion estimation, thus reducing the cross capacitances in these wires.

As described earlier in this chapter, interconnect cross-capacitance is a major factor in
determining system performance and power consumption. A “congestion-conscious” router
can significantly reduce interconnect delay and power consumption. For example, cross
capacitances can be reduced by as much as 60% if wiring pitches are double. In addition
to the above two applications, the congestion estimation can also be used in floorplanning

and block placement, as described in the next section.

CHAPTER 3. WIRE CONGESTION MODEL

(a) First Congestion Map

PR T DT T e R e e A AT
e dast
st ias
fw— Controller DataShiftReg daa

Datapath

CoefShiftReg

(b) Second Congestion Map

v | - |._.-r| | . I o | ..,l e | P | i | v
- aan
i i
fo— Controller DataShil Reg st
- it
i)
m Counter | Dev cath
ar ot
aut cath
s aacts
o .,l|||..|||_l_~

(¢) Actual Layout

L] o L] o
datal |dala? (dates vdd_2

o [| |l | [gd| o
1 |sude st petsl s R@ITOU | @881 | 4 0 |datad

o
coeld

o
coell

(-]
coel2

Figure 3.8: Wire Congestion Example: Chip A (Adaptive FIR Filter)

42

CHAPTER 3. WIRE CONGESTION MODEL

(a) IPlan Result (a = 0.5)

| AddrGen Controller —

- n
. RegFile Tinta Path -
o)

want
o | [.,] m | o | w [-] | l -

(b) Actual Layout

o o fdo | o o fgndllo flo [l flo | o
20(30|31(32|33[40(34(35|36(37|2
o
31

a_1n

Figure 3.9: Wire Congestion Example: Chip B (16-bit Microprocessor)

CHAPTER 3. WIRE CONGESTION MODEL 44

3.3 Floorplan Optimizer

3.3.1 Problem Formulation

In the conventional design flow, chip floorplanning is performed only in the physical de-
sign stage. This design methodology is becoming problematic, as feature size continues to
shrink. As floorplanning can decidedly affect architectural and logic design optimization, we
are convinced that floorplanning should become part of the architectural and logic design
phases.

The IPLAN floorplanning framework, described in detail in Chapter 5, allows designers
to perform chip floorplanning in the architectural and logic design stages. This section
describes how the IPLAN floorplanner utilizes the congestion information to optimize a
floorplan. As an example, we describe how to optimize the power consumption of a floorplan
based on the congestion estimator.

There are two classes of floorplan representations: slicing and non-slicing. A slicing
floorplan [Ott82] is obtained by recursively dividing a rectangle into two parts by either
vertical or horizontal lines. All other floorplans are classified as non-slicing floorplans. Slic-
ing structure provides an easy way to optimize block orientations [Sto83], define reasonable
channels in global routing [MNK95], and order channels in detailed routing [Kaj83]. Fig-
ure 3.10 shows a simple slicing floorplan example, consisting of seven rectangular blocks (A,
B,C,D, E, F, G).

Figure 3.10: A Slicing Floorplan Example

CHAPTER 3. WIRE CONGESTION MODEL 45

In this example, the floorplan is constructed by first slicing the floorplan horizontally
and dividing the floorplan into two halves: {A, B} and {C, D, E, F, G}. The upper half
is sliced vertically and in turn divided into two parts: {A} and {B}, while the lower half
is also sliced vertically and in turn divided into two parts: {C} and {D, E, F, G}. This
slicing process is continued until all blocks are contained in their own partitions. The slicing
floorplan structure can be efficiently represented using a binary tree, manipulated easily in
software using linked lists. Figure 3.11 shows the binary tree representation of the example

in Figure 3.10.

Horizontal Slicings

Vertical Slicings

Figure 3.11: Binary Tree Representation of the Slicing Floorplan

The slicing floorplan structure is easy to manipulate, and can be optimized efficiently
using divide-and-conquer techniques. On the other hand, the slicing floorplan structure
sometimes can be ineffective because it does not represent all compact floorplans. Fig-
ure 3.12 shows a floorplan example that cannot be represented by a slicing floorplan. In
general, this problem is more serious when the number of blocks is small (e.g. < 20) because
it is more difficult to find a compact floorplan following the slicing floorplan structure.

Fortunately, a general floorplan of rectangular blocks can be represented by two other
structures: sequence pair structure [MFNK95] and bounding slicing grid structure (BSG)
[INFMK96]. Both of these two structures were extended to support convex rectilinear
blocks [Mag98a, SNK98, Mag98b, XC98]. The main drawback of non-slicing floorplan struc-
tures is that they are computationally expensive to optimize. In fact, the decision whether a

given set of fixed-oriented rectangles, having width and heights real numbers, can be packed

CHAPTER 3. WIRE CONGESTION MODEL 46

Figure 3.12: A Non-Slicing Floorplan Example

into a chip of known width and height was proven to be NP-complete [BCR90] whereas the
problem of finding a minimum area packing is NP-hard. In the IPLAN floorplan framework,
the number of functional blocks is assumed to be not too large (e.g. < 40). Thus, we elect
to use the sequence-pair representation because non-slicing floorplans are more compact

and sequence-pair structures can be handled easily in software.

Sequence Pair Structure

The topological relationships among all the blocks in a floorplan may be expressed by a
sequence pair. Murata’s paper [MFNK95] describes the sequence pair structure in detail.
Assume that there are () blocks in a floorplan, and each block is represented by a symbol.
A sequence pair for a floorplan consists of two sequences of the () symbols. For example,
assume that @ is 5. Given a sequence pair (A D E B C, D C E A B), an oblique grid may
be constructed as shown in Figure 3.13.

For every block, the plane is divided into 4 regions by the two crossing slope lines. In
this example, block A is in the upper region above block E, which means that A is above
E. Similarly, B is to the right of E, C is below E, and D is to the left of E. This sequence

pair represents the floorplan shown in Figure 3.12.

CHAPTER 3. WIRE CONGESTION MODEL 47

Figure 3.13: Sequence Pair Example

Power Dissipation Model

In the past the main objective of the floorplanning stage was to minimize the chip area. At
deep submicron feature sizes, floorplanning plays a vital role in optimizing system perfor-
mance and power consumption. This section formulates how to optimize power optimization
in a floorplan. As described in Chapter 1, the power dissipation in a CMOS circuit is mainly
due to the interconnect switching loss (Pipterconnect). In Equation 3.10, Cinterconnect 1S the
interconnect capacitance, f. is the clock frequency, V4 is the supply voltage, and p; is the

probability that a transition occurs.

Pinterconnect = bt (Cinterconnect : Vd2d : fclk:) (310)

In order to evaluate the interconnect power dissipation, we need to examine the inter-
connect capacitance in more detail. Sakurai [ST83] proposed simple formulas to estimate
the line-to-ground capacitance (C7) and cross capacitances (Coy, Co21). The formulas are
shown in Equations 3.11 and 3.12, where L is the total wire length. The parameters W, H,
T, and S are defined in Figure 3.14.

Ch = o - [1.15 (%) 1238 (%)mzl L (3.11)

CHAPTER 3. WIRE CONGESTION MODEL 48

0.03 (L) +os3(L) —o007 (L - 3.12
() o (i) -or () 7] o

—1.34
0202021260:5'(§> -L-

>
€
i
i
i
i

Ca

H Cao

TS
GROUND PLANE

Figure 3.14: Sakurai Wire Capacitance Model

The transition probability (p;), voltage swing ('), and clock frequency (f) are different
for every net. In some cases, even the supply voltage (Vy;) may vary from one net to
another [CP96, RS95]. We define the activity factor w; for net 7 as the product p;-V-Vag- ferke-
Let Py be the power dissipation due to line-to-ground capacitance, and let P; be the power
dissipation due to cross capacitance. P; depends on both the wire length and wire spacing,

and Py depends only on the wire length. Using Equations 3.11 and 3.12, we can derive:

Py x w; - L (3.13)

Py ocw;- L-8713 (3.14)

The interpretation of these two equations is quite simple: when the activity factor (wj;) is
high, the wire length (L) should be minimized and the wire spacing (S) should not be too
small.

Wire Density and Power Dissipation

This section derives the relationships between wire densities and power consumption. Based

on the following theorems, the power dissipation can be calculated from the wire densities.

Theorem 1 Dy(z,y) + Dy (x,y) is proportional to the total wire length in a layout.
T,y

CHAPTER 3. WIRE CONGESTION MODEL 49

Proof: The total wire length is equal to the sum of all the wire segments in a grid graph.
Therefore, the total wire length is equal to }>, Dp(z,y) + Dv(z,y) multiplied by the

spacing between adjacent grids.

Theorem 2 For each net i, w; is the activity factor as defined in Section 3.1. Assum-
ing that the number of wires in each net is multiplied by w;, let Dy (z,y) and Dy (z,y)
be the new horizontal and vertical wire densities at (,y). >, , Dy (x,y) + Dy’ (z,y) is

proportional to the total power dissipation due to line-to-ground capacitance (P).

Proof: Using Theorem 1, Zw,y DH,(x,y) + Dvl(x,y) is proportional to to w;- total wire

length. As shown in Section 3.1, w;- total wire length is proportional to Pj.

, 2.34 , 2.34 ,
Theorem 3 Zx,y Dy (z,y) + Dy (z,y) is roughly proportional to the total power

dissipation due to cross capacitance (P).

Proof: The wire density is assumed to be roughly inversely proportional to wire spacing S.
. ’ 2.34 ’ 2.34 ’ 1.34 ’
The summation } , Dg (z,y) +Dv (z,y) isequalto) . Dp (z,y) -Du (z,y)+
/ 1.34 ’
Dy (z,y) " - Dy (x,y), which is proportional to S~134 . w;- total wire length. As shown

in Section 3.1, S~134 . w;- total wire length is proportional to P;.

3.3.2 Algorithm

As described in Section 3.3.1, optimizing a non-slicing floorplan is a NP-hard problem
and it would be impractical to find the optimum solution by “brute-force.” We follow
Murata’s approach to use a heuristic technique — simulated annealing — to search for optimal
solutions [MFNK95]. In Murata’s paper, the floorplan area is used as the objective function.
In this section, we apply different objective functions and examine their impacts on power
consumption and area.

Simulated annealing [KGV83] is a generalization of a Monte Carlo simulation [MRR*53].
It is a computational process patterned after the physical process of annealing, in which
physical substances such as glass are melted and then gradually cooled until some solid
state is reached. The goal of this process is to achieve a minimal-energy final state. By
performing enough exploration of the entire space early on, the final solution is relatively
insensitive to the starting state. This would minimize the chances of getting caught at a

local minimum state.

CHAPTER 3. WIRE CONGESTION MODEL 50

In the physical annealing process, substances usually move from higher energy config-
urations to lower ones but there is some probability that the reverse can also occur. This

probability p is given by the following equation.
p = e AP/ (3.15)

where AF is the positive change in the energy level, T' is the temperature, and & is Boltz-
mann’s constant. The simulated annealing algorithm follows the physical annealing process.
In this analogous process, AFE is generalized to represent the change of the value of an ob-
jective function. Since the units for ¥ and T are artificial, the Boltzmann’s constant £ is
incorporated into T'. Thus, the following revised probability formula is usually used in the

simulated annealing algorithm.
p = AEIT (3.16)

In case of our floorplanner, a sequence pair is created at random initially. The tem-
perature is gradually lowered following an exponential cooling schedule. At each simulated
annealing step, the algorithm considers one of the following three perturbations: (a) rota-
tion of a random block, (b) “half exchange” of the sequence pair, (¢) “full exchange” of the
sequence pair. The “half” and “full” exchanges of a sequence pair are simply mutations in
the sequence pair structure, and are described in [MFNK95] in detail.

The floorplanning algorithm may or may not accept each perturbation, depending on
three factors: the result of an objective function, the current temperature, and the result of
a random number generator. If the objective function of the new solution is better than the
present solution, the perturbation is accepted. On the other hand, if the objective function
of the new solution is worse than the present solution, Equation 3.16 defines the probability
determining whether the new solution is accepted or not. As the temperature decreases,
this probability gets smaller and smaller.

How do we select the objective function? Obviously, we can use the power consumption
equation as our objective function. However, the resulting floorplan may be too large
because the area is not optimized. A different approach is to use a constraint optimization,
in which each perturbation is accepted only if the constraints are met. This approach can be
useful. For instance, an area constraint may be imposed so that only perturbations smaller

than a certain area are accepted. One caveat of this approach is that it may create sharp

CHAPTER 3. WIRE CONGESTION MODEL 51

edges and non-linearity in the solution space and thus affect the quality of the simulated
annealer. In this experiment, we elect to use an objective function (®p) that takes both
power and area into consideration (Equation 3.17). This objective function does not create

sharp edges in the solution space and appears to give fairly good results.
dp = Area - Py - PN (3.17)

In this equation, Area is the total floorplan area, Py and P; are the power consumption due
to line-to-ground and cross capacitances, respectively. Ag and \; are parameters determining
the relative importance among Area, Py, and P;. For example, if Ay and A; are small, the
objective function is insensitive to power consumption. Conversely, if both Ag and A\; are
large, ®p is less sensitive to Area. Using the theorems in Section 3.3, the objective function
can be expressed in terms of the wire densities (Equation 3.18).

Ao

A
dp = Area - [Z Dy'(x,y) + Dv'(z, y)] [Z D' (z,) + Dy (2, 9)] (3.18)
T,y T,y

In our experiment (results described in Section 3.3.3), four different sets of Ay and A,
are used. Set 1 optimizes only for area, in which both Ag and A; are 0.0. Set 2 optimizes for
both area and line-to-ground capacitance, in which)y is 1.0 and Ay are 0.0. Set 3 and Set
4 optimize for all three design considerations: area, line-to-ground capacitance and cross
capacitance; however, Set 4 emphasizes cross capacitance more than Set 3. In Set 3 Ag is
1.0 and Ay are 0.5, whereby in Set 4 Ao is 1.0 and A are 1.0.

For simplicity, we assume that the objective function ®p is smooth at the optimal point.

Thus, we can differentiate In(®p) at the optimal point and get the following equation.

dArea dP, dP,
AN — +A-— =0 3.19
Area + Ao B AL P ()

For example, \g is 1.0 and A; is 0.0 in Set 2, and Equation 3.19 becomes:

dArea N ﬁ
Area By

=0 (3.20)

In Set 2 the objective function treats area and line-to-ground capacitance equally. In other
words, the floorplanning algorithm is willing to accept a p% decrease in line-to-ground

capacitance at the expense of p% increase in the total area, or vice versa. Similarly, the

CHAPTER 3. WIRE CONGESTION MODEL 52

objective function considers area, line-to-ground capacitance and cross capacitance in Set
3. However, cross capacitance is treated less importantly compared with area and line-
to-ground capacitance in this case. The floorplanning algorithm is willing to accept a p%

decrease in cross capacitance at the expense of only g% increase in the total area.

3.3.3 Experimental Results

Our simulated annealing floorplanning algorithm was implemented and tested with the
MCNC building block examples (apte, zerox, hp, ami33). The numbers of blocks and nets

for each example are shown in Figure 3.15.

MCNC Benchmark
apte Xerox hp ami33
No. of blocks 9 10 11 33
No. of nets 97 203 83 123

Figure 3.15: MCNC Benchmark Statistics

In our experiment, all the modules are hard modules which means that the dimensions
of each block are fixed and inflexible. For simplicity, all terminals are assumed to be located
at the centers of the blocks. The multi-terminal pins are decomposed to 2-terminal pins as
described in Section 3.2, and the activity factors (w;) for all the nets are set to 1.0.

As described in the previous sub-section, the benchmarks were tested with four different
objective functions. The results of the MCNC benchmark are shown in Figure 3.16. The
first objective function (Set 1) only optimizes for the total floorplan area. The second
objective function (Set 2) optimizes for both area and line-to-ground capacitance. The
third and fourth objective functions (Set 3 and Set 4) optimizes for area, line-to-ground
capacitance and cross capacitance. The difference between the last two sets is that the
fourth objective function (Set 4) puts more emphasis on the cross capacitance than the
third objective function (Set 3).

In order to compare the numbers between different sets of data easily, the results are
normalized with respect to the first objective function (Set 1). When we compare the results
of the second objective function (Set 2) with respective to the first objective function (Set
1), we find that the line-to-ground capacitance Py is lowered by 11% to 48% at the expense
of roughly 10% increase in Area. Depending on the target application, one of these two

design points may be more favorable. For example, power consumption may not be an

CHAPTER 3. WIRE CONGESTION MODEL 53

MCNC Benchmark

apte Xerox hp ami33

Set 1 Area 100% 100% 100% 100%
A =0.0 Py 100% 100% 100% 100%
A =0.0 P, 100% 100% 100% 100%
Set 2 Area 110% 117% 113% 107%
AN =1.0 Py 52% 51% 69% 89%
A=0.0 P, 13% 28% 40% 78%
Set 3 Area 104% 115% 107% 104%
A =1.0 Py 50% 46% 76% 88%
A=05 P, 11% 21% 36% 76%
Set 4 Area 107% 135% 136% 103%
A =1.0 Py 53% 54% 53% 89%
A=1.0 P, 9% 21% 29% 75%

" All results are shown in relative percentages with respect to Set 1.

Figure 3.16: MCNC Benchmark Result

important consideration for stationary appliances and designers may opt for a smaller and
cheaper design (Set 1).

Similarly, we can perform the same comparisons for the third and fourth objective
functions (Set 3 and Set 4). In case of Set 3, the objective function is implemented as
Area® - Py? - P to avoid expensive square root operation. For the MCNC benchmarks,
the third objective function appears to give fairly good results. In general, the total area
is slightly smaller than the second objective function, and the power consumption due to
cross capacitances is less than the first two cases. Lastly, the fourth objective function (Set
4) yields the smallest P; term (as expected) but the area is significantly larger than the
third objective function, especially for the zerox and hp benchmark.

After examining the results of these four objective functions, it appears that if power
consumption is an important criteria, the third objective function (Set 3) should be used.
On the other hand, if cost and die size is the only design criteria, obviously the first objective

function (Set 1) should be used.

CHAPTER 3. WIRE CONGESTION MODEL 54

3.4 Summary

This chapter presents a statistical wire congestion model and a floorplanning algorithm
using this model. As feature size shrinks, cross coupling between adjacent wires becomes
very severe, affecting the performance and power consumption of the system. The wire
congestion model is very important, helping designers identify routing hotspots and avoid
excessive cross coupling.

The wire congestion model takes many practical considerations (such as via minimiza-
tion, routing obstacles, multi-pin nets, routing between points and blocks) into account. A
simple and efficient algorithm is presented in Section 3.2.2 to calculate the routing densi-
ties. Our model has been compared with the actual layouts in some simple designs and the
results are positive. One caveat is that in order to obtain a more accurate estimation, the
floorplan model has to be configured with care. Specifically, the exact pin locations and
routing obstacle positions should be input to the floorplanner if they are available.

The floorplanning algorithm uses a non-slicing floorplan representing the layout of a
design. The non-slicing floorplan is internally denoted by a sequence-pair structure. In
general, a non-slicing floorplan is more compact than a slicing floorplan but its optimization
process is also more computationally expensive. In our floorplanner, a simulated annealer
is used to search for optimal solution. The objective function of the annealer is based on
the outputs of the congestion model. The relationships between routing densities and
interconnect capacitances are derived in this chapter. Based on these derivations, the
floorplanner can use the congestion model to optimize the system power consumption.
Using the MCNC benchmarks as our example, we show how the floorplanner provides users

with design tradeoff information (e.g. between chip area and power consumption).

Chapter 4

Processor Performance Model

While the last two chapters discuss the on-chip interconnections in terms of wirelength
distribution and wire congestion, this chapter takes a different perspective and examines
the impacts of interconnect overheads on processor performance. Like the previous two
interconnect models, this interconnect-driven processor performance model is part of the
IPLAN floorplanning framework described in Chapter 5.

In the last fifty years, computer architecture has evolved continuously pursuing higher
performance, which usually comes at the expense of increased hardware complexity. Server
processors, such as IBM Power4/Regatta [Die00], Compaq Alpha 21264C [KreOla], In-
tel Itanium [Gla02] and AMD Athlon MP [KreOlb], are by and large super-pipelined
and issue multiple instructions per cycle [MPR02]. On the other hand, the interconnect
overhead associated with the additional complexity can limit the benefit of these compli-
cated techniques [FHR99|. As discussed in Chapter 1, processor architectures have to be
“interconnect-driven” in deep submicron feature size. This chapter presents a processor
performance model that takes interconnect and other hardware complexity overheads into

consideration.

4.1 Introduction

Dubey and Flynn showed that pipelining in processor can result in diminishing and even
negative returns [DF90]. This is mostly due to clock overheads (e.g. clock skews caused by
interconnect delays) and pipeline setup overhead [Phi97]. Assume that the total time to

execute an instruction without clock overhead is 7', the clock overhead per pipeline stage

95

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 56

is C, and the total time T is segmented into S segments to allow pipelining. Ideally the
pipeline completes one instruction per cycle (T//S + C), but there are disruptions such
as unexpected branches that result in flushing and restarting the pipeline. Suppose these
interruptions occur with frequency b and have the effect of invalidating S — 1 instructions.

The pipeline throughput G becomes

1 1

G = 1+(S—1) T/S+C

(4.1)

Differentiating G' with respect to S determines the optimum number of pipeline stages S,
as shown below.

1—0)T

Sopt = (4'2)

Intuitively, if the cycle time is too large and there are too few stages in the pipeline, we
sacrifice overall performance by not overlapping execution sufficiently. On the other hand,
if the cycle time is too small, we sacrifice overall performance by incurring too much clock
overhead and suffering long pipeline breaks. Figure 4.1 shows the relationship between the

performance and the number of pipeline stages.

Performance vs Number of Pipeline Stages

Performance

1
} Sopt

Number of Pipeline Stages (S)

Figure 4.1: Processor Performance vs Number of Pipeline Stages.

There is an analogous behavior in selecting the optimum instruction issue width in a

processor. If the issue width is too narrow, we sacrifice overall performance because the

CHAPTER 4. PROCESSOR PERFORMANCE MODEL o7

processor cannot fully exploit the available instruction-level parallelism (ILP) in a program.
Conversely, if the issue width is too wide, we sacrifice overall performance by incurring
excessive interconnect and other hardware overheads to achieve the ILP. While it is well
known that increasing the width in a processor can result in diminishing returns [JW89,
Phi97], there is no systematic approach to determine the optimum width. In this chapter, we
describe a new analytical processor model and show that there is a simple way to optimize
instruction issue width. Section 4.2 describes the model and derives a upper bound on the
optimum instruction issue width. Section 4.3 presents the simulation results. Section 4.4

discusses some applications of the model.

4.2 Problem Formulation

In this section, we present an analytical model representing the performance of a concurrent
processor. A concurrent processor [Fly95], also known as an ILP-processor [SFK97], may be
defined as a processor that can fetch, decode, issue, execute and retire multiple instructions
per cycle. This is in contrast to a scalar processor that can only fetch, decode, issue,
execute and retire one instruction per cycle. The instructions in a concurrent processor
may be dynamically scheduled as in a superscalar processor [Joh91], or statically scheduled
as in a VLIW (very long instruction word) processor [Fis83]. Our processor performance
model consists of two parts: an IPC model and an interconnect / complexity overhead

model.

4.2.1 IPC Model

The throughput of a processor may be measured in terms of the average number of instruc-
tions executed per cycle (IPC). A concurrent processor often has a larger IPC than a similar
scalar processor, and can therefore achieve a better performance than the scalar processor
running at the same clock speed. Figure 4.2 shows the instruction issue stage of a 4-way
superscalar processor. In this example, the instruction window size is twelve, meaning that
the processor can select from twelve decoded instructions to issue in every cycle [Joh91]. In
this example, nine out of the twelve instructions in the instruction window cannot be issued
due to instruction dependencies or resource conflicts in this clock cycle. Consequently, only
three of the four issue slots are occupied.

Let IPC(N) and IPC(1) be the IPC of an N-way concurrent processor and a scalar

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 58

JUSI— b Issued
e I | lnstruction
r-------Instruction Window Size =12 _______{_ . F—
! P /~ \\\\
: P 3 Issued
! o i [nstruction
1 : I
| | —
1312 [11{10| 9| 8|7 |6 |5|4|3|2]|1 i E
| Do
1 I |
- 1 P
i Instruction Stream— ™\ . ! P 6 Issuec}
: . . v/ Instruction
S S Empty
Slot

Instruction Issue Width =4
Figure 4.2: Instruction Issue in a 4-Way Superscalar Processor

processor, respectively. The N-way concurrent processor can potentially issue and execute
N — 1 more instructions than the scalar processor. We define a random variable P as the
probability that each of the additional N —1 issue slots is idle. Thus, the difference between
IPC(N) and IPC(1) is determined by Equation 4.3.

IPC(N) — IPC(1) = (N —1)- (1 — P) (4.3)

If the probability P is 0, the concurrent processor can issue N — 1 additional instructions
every cycle. Conversely, if the probability P is 1.0, the concurrent processor is virtually
same as a scalar processor. In a useful and effective architecture, the value of P cannot
be too large (e.g. > 0.8) because the issue slots should not be idle most of the time.
The probability P depends primarily on the processor microarchitecture, including the
instruction issue width IV, the instruction window size, the number of functional units and
the memory and execution latencies, and so on. Increasing the instruction issue width N
increases P, while increasing the instruction window size or the number of functional units
reduces P.

The next step in the derivation is to examine the number of active instructions (M) in

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 59

a processor. An active instruction is defined as an instruction that has been issued but not
yet retired. Some instructions, such as “load” or “store”, may take many processor cycles
(e.g. 10 — 20), whereas an “integer add” instruction typically takes much fewer cycles. As
depicted in Figure 4.3, the average number of active instructions (M) is the product of
IPC(N) and L.

M =IPC(N)- L (4.4)

The parameter M is instrumental in determining the IPC. As M gets bigger, the probabil-
ities of instruction dependencies and resource conflicts becomes higher, and the probability
P increases. First, we examine the effects of instruction dependency on the probability P.
Let d be the probability that any two instructions in the instruction stream are dependent.
The probability d is application-dependent and we assume that d is a constant for each
application. Figure 4.4 shows the relationship between P and M for d = 5% to 10%. As
expected, the probability P increases with M for a given d and also increases with d for a
given M.

Let p be the multiplicative factor between P and M (Equation 4.5). Please note that
the factor p is not a constant but a function of M. In fact, p always increases when M
increases within meaningful design range from P = 0 to P = 0.8. In other words, p is an

increasing function of M within this range.
P=p-M (4.5)

While the precise impacts of resource conflicts on P depends largely on the hardware

CPU Blackbox

Average Number of Average Number of
Input Instructions per |:> Average Number of :> Completed Instructions per
Cycle = IPC Active Instructions (M) Cycle = IPC
=L*IPC

Ié Average Latency = L %i

Figure 4.3: Number of Active Instructions in a Processor

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 60

implementation, their effects are similar to those of instruction dependencies based on anal-
ogous arguments and derivations. Thus, we use the same equation to model both instruction

dependencies and resource conflicts.

T e S Bl
0.9 gt e
~ ’ ,f', - - -
0.8 | Pt e
X Ke e
. ’ pe
0.7 1 ‘.1' a
R ‘/ /'
J s '
o 06 ; g e
£ ,
2 05 . ’
23 : ’ / .
o d=10%" /d=9% <d=8% /d=T% d=6% d=5%
a 04 - : 7 »
. :/ '/
0.3 1 x4 7
’ 7
02 1 s
B 4 /
; o
0.1 S S
- 4 K4
_ ’ ‘/,/ PPte
0 T T T T T \‘/\ T /\ T _-\ = T
- M O N~ O - O O N O T MO O NN OO T M WO N OO T M N0 T MW
~ - — AN N N N N O O 0o 0O O F F F 8§ ¢ 0 0 v

Number of Active Instructions (M)

Figure 4.4: Relationship between issue slot idle probability (P) and the number of active
instructions (M) for different instruction dependency probabilities (d = 5%, 6%, 7%, 8%,
9%, 10%)

Using Equations 4.3, 4.4, and 4.5, we derive IPC(N) in terms of TPC(1), N, p, and L.

IPC(N)

_IPC(1)+ (N —1)
l+p-L-(N-1)

Consider the limiting case when N approaches co. As the vast majority number of issue

(4.6)

slots are idle, the probability P approaches 1 when N approaches co. Thus, the number of
active instructions (M) can be approximated with 1/p (Equation 4.5). Let IPC(00) be the

IPC of an ideal processor with an infinite instruction issue width. From Equation 4.4, we

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 61

get:

1PC(s) = 4

1
4.7

If we approximate p- L to be a constant, the IPC equation can be rewritten in terms of N,
IPC(1), and IPC(o0) as in Equation 4.8.
I1PC(1 N-1
1Po(N) ~ LCA + (V= 1)
1+ 1o
TPC(o0)

(4.8)

However, p - L is not a constant but an increasing function of N because p is an increasing
function of M and M is an increasing function of NV, This implies that the actual IPC can be
larger than the approximation. Figure 4.5 compares the IPC(N) in Equations 4.6 and 4.8.
While the differences are small, the IPC rises and saturates faster in the original equation
(Equation 4.6). Thus, we obtain the following expression representing a lower bound on
IPC(N).

IPC(1)+ (N —-1)

N1
1+ I(PC’(tx)))

IPC(N) > (4.9)

Equation 4.6

IPC
o

1 2 3 4 5 6 7 8 9 10 11 12
Instruction Issue Width (N)

Figure 4.5: TPC vs Instruction Issue Width (V) based on Equations 4.6 and 4.8.

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 62

4.2.2 Interconnect/Complexity Overhead Models

Ideally, instruction issue width N does not affect either cycle time or average instruction
latency L. However, there are usually extra interconnect and gate delays caused by the
added complexity. The extent of the impacts primarily depend on hardware implementation,
such as circuit design and physical layout.

In this section, we develop a set of interconnect / complexity overhead models repre-
senting these overheads in most implementations. Let L; and T be the average instruction
latency and the cycle time of a scalar processor. Table 4.1 illustrates nine different overhead
models. For instance, Model A represents the ideal model where instruction latency clock
cycle are constant. The parameter O is a scaling factor modeling the significance of the
overhead. The amount of hardware complexity overhead depends on the overhead model

as well as the scaling factor O.

Table 4.1: Various Interconnect and Complexity Overhead Models'

| Model | Instruction Latency | Cycle Time | Description |
A L Tc Ideal Model
B Li-(1+0-(N-1)?) Tc Non-buffered wire (length oc V)
C L;-(1+0-(N-1)) Tc Buffered wire (length oc V)
D L - (1+0 VN -1) Tc Buffered wire (length o« v/N)
E Li-(1+0O-log(N—1)) Tc Decoder/Multiplexer
F Ly Tc- (140 (N —1)?) | Non-buffered wire (Iength o< N)
G Ly Te-(1+0O- (N -1)) Buffered wire (length oc V)
H L, Te-(1+0-V/N—-1) Buffered wire (length o v/N)
I Ly Te - (1+ 0O -log(N —1)) Decoder /Multiplexer

LN is the instruction issue width; O is the proportionality constant for the overhead factor; L; and
T are the average instruction latency and the cycle time for the scalar processor.

Models B, C, D, F, G, H represent six different interconnect overhead models. In general,
interconnect delay can affect either cycle time or average instruction latency (in number
of processor cycles). Models B, C, D correspond to an increase in instruction latency,
while Models F, G, H correspond to an increase in cycle time. In a linear physical layout,
interconnect delay increases quadratically with N without repeaters (Models B and F) but
increases linearly with N with repeaters (Models C and G). Similarly in a two-dimensional
layout, interconnect delay increases linearly with N without repeaters (Models C and G)
but increases linearly with /N with repeaters (Model D and H). Finally, Models E and T are

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 63

overhead models related to gate delays. In decoder and multiplexer design, gate delays are
proportional to log(N). Model E corresponds to an increase in instruction latency, which
Model I corresponds to an increase in cycle time. In deep submicron designs, interconnect
overheads are more significant than gate overheads in most designs. Thus, Models E and I

are becoming less important.

4.2.3 Overhead Examples

In this section, we analyze two critical pipeline structures (register file access time and

instruction wakeup logic time), which often determine the processor clock cycle time.

Register File

The register file of a pipelined processor typically completes read and write operations
within a single cycle. This process is atomic and indivisible in most processor designs. As
a result, register file access time often limits the maximum clock speed for a processor. In
order to investigate the effect of issue width IV on register file access time, we examine the
relationship between the issue width IV and the number of read and write ports required of
the register file.

Based on the register file delay model described in [FJC95] and the CMOS scaling
model proposed by McFarland [McF97], we derive the register file delay as a function
of issue width N and feature size. Using the register file access time, the appropriate
overhead scheme and the overhead scale factor for the register file can be determined.
Generally speaking, the number of read and write operands per instruction depends on
the instruction set architecture (ISA). Typically, there are two or three source operands
and one destination operand in a RISC ISA. The upper bound on the number of read and
write ports in a register file are therefore three or four times the instruction issue width;
however, the number of register ports required is usually smaller. This is because not all
instructions use the maximum number of source and destination operands, so it is possible
to arbitrate for the register ports [Joh91]. Besides port arbitration, there are other effective
ways to reduce the number of register ports, including duplicating and partitioning register
file [Kel96, FCJV9T7].

If N is the instruction issue width, the number of register ports required is about 2N for
commercial processors. We follow the approach in [FJC95] and use the CMOS scaling model

to calculate the register file access time for a 128-entry register file at 0.18 ym technology.

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 64

We assume that the register file has 2N ports for an issue width N of 1 through 8. The
register file delay model includes the decoder, wordline, bitline, sense amplifier, output
driver, and precharge delay times. Figure 4.6 shows the register file access time as a function
of issue width N; the register file access time is normalized with respect to the access time
for N = 1. The sense amplifier delay is constant while all other delay components scale
linearly with N. If we assume that the register file access time determines the clock cycle
time, the cycle time increases linearly with N (Figure 4.6). Thus, the overhead can be
modeled using Model G in Table 4.1. The overhead scale factor O is found to be around
17% from the graph.

3.5
€ 30 et
= L ---a-- Decoder
%] e = Wordline
3 20 - ~-a-- Bitline
- ---+-- Sense Amp
_g 1.5 1 Output Driver
E 10 - —+— Precharge
= —m— Total Access Time
S 05

0.0

1 2 3 4 5 6 7 8
Instruction Issue Width (N)

Figure 4.6: Register File Access Time vs Instruction Issue Width (V).

Wakeup Logic

The instruction window is an important piece of processor hardware component required
to support out-of-order execution. After instructions are decoded, they are inserted to the
instruction window waiting to be issued. In some high-performance processor designs the
registers used in the instructions are renamed to eliminate output- and anti-dependencies.
When an instruction retires, its destination register number is broadcasted to all the stalled
instructions in the instruction window. The tag broadcast and associative comparison is

known as instruction wakeup logic.

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 65

Palacharla et al. [PJS96] identified the instruction wakeup as one of the timing critical
components in superscalar processors. The wakeup logic delay consists of three components:
tag drive, tag match, and match-or delays. Figure 4.7 shows the normalized delays of the
wakeup logic and its three components. The wakeup delay scales roughly linearly with the
issue width N. In fact, the general shape of these graphs are quite similar to the register
file access time in the previous section. As N increases, designers can choose to increase the
cycle time or the number of pipeline stages for instruction issue, corresponding to Model
G and Model C in Table 4.1. In both cases, the overhead scale factor O is approximately
13%. Please note that Model C cannot be used for register file access time because it is

difficult to pipeline a register file.

3 —
E' 2.5
8 2 —— Tag Drive
Lo} ---+--- Tag Match
8 15 -+~ Match OR
g 1 —m— Wakeup Logic Delay
=
o
Z 05
O T T T T T T T T 1

0 1 2 3 4 5 6 7 8 9
Instruction Issue Width (N)

Figure 4.7: Wakeup Logic Delay vs Instruction Issue Width (V).

4.2.4 Upper Bound on Optimum Instruction Issue Width

The performance of a processor is proportional to its IPC and inversely proportional to its
cycle time. Using the IPC lower bound expression in (4.9), the performance G(N) can be

expressed as follows:

G > IPC(1) + (N —1)

T (1 + A=) L CyeleTime

— (4.10)
TPC(c0)

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 66

In this section, we use Model G as an example to illustrate how to determine an upper
bound on the optimum instruction issue width (Nyp). Substituting CycleTime for Model
G into (4.10), we get:

IPC(1) 4+ (N —1)
(1+ $pecl) - Te(1+ 0+ (N = 1)

G(N) > (4.11)
Figure 4.8 compares the LHS and RHS of the above inequality. As shown in the figure,

the peak of the RHS may serve as an upper bound on the optimum instruction issue width
Nopi. To find the peak of the RHS, we simply differentiate the RHS with respect to N and

LHS in (4.10

Relative Performance
()]
Il

Nopt upper bound
0 l‘\lopt (eqﬁation 4.‘11)

1 2 3 4 5 6 7 8 9 10 11 12
Instruction Issue Width (N)

Figure 4.8: Relative Performance vs Instruction Issue Width V.

set the expression to 0. Thus, we get:

IPC(c0)

Nop: <1 —IPC(1) + \/IPC(l)2 +—5

_1PC(1)- (é FIPC(c0) (412)

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 67

If we assume that J/PC(1) is close to 1 and O < 1, (4.12) can further be simplified as shown
in (4.13).

Nopté\/IPC(oo)O—IPC(l):\/AIé?C (4.13)

We can derive the upper bounds on the optimum instruction issue width N,,; for the other
overhead models in a similar fashion. Table 4.2 summarizes the upper bound expressions
for the different overhead models. If the overhead scale factor O is very small, N, can
be written as shown in (4.14) where % < a < 1. The value of a depends on the overhead
scheme used. For example, « is equal to % for Models B and F, % for Models C and G, %
for Models D and H, and 1 for Models E and I.

AIPC’)O‘ 14

Nopt S <

Table 4.2: Upper Bounds on N, for Various Interconnect/Complexity Overhead Models

| Model | Instruction Latency | Cycle Time | Upper Bound on N,
A L, Te 00
B Li- (14 0-(N-1)?) Te 11200 % \3/Méso
C | Li-(1+0-(N-1) Te 1 - IPO(1) + /A€
D Li-(1+0-yN=1) T 1+1-\s/g.1-{>/Af_gc
E Li- (140 -log(N —1)) Tc 1+ 8IFC
F Ly Te- (1+0- (N -1)?) 1_%(1)_1)-5“%_?#1_50
G L To-(1+0-(N 1)) 1 - IPC(1) + /A<
H L, To-(1+0-VN=1) 14 /3 y/AlC
I L, Tc - (1+O-log(N — 1)) 1+ &IFTC

4.3 Experimental Results

In this section, we verify the IPC model and the optimum instruction issue width expression

described in Section 4.2 using the MXS superscalar simulator, the performance simulator

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 68

used in the IPLAN floorplanning framework. The details of the MXS simulator is discussed
in Chapter 5 and also in [Ben98|.

Our baseline processor model resembles a state-of-the-art superscalar processor. It en-
compasses a load/store buffer, a reorder buffer and an instruction window of 72 entries.
The 64KB L1 cache is 2-way set associative with a line size of 32 bytes and a latency of 3
cycles. The 512KB L2 cache has the same line size and a read/write hit latency of 10/11

cycles. The latencies of the integer and floating-point units are shown in Table 4.3. The

Table 4.3: Functional Unit Latencies

Functional Unit Latency (cycles) || Functional Unit Latency (cycles)
Logic 1 FP Add/Subtract 4
Integer Add/Subtract 1 FP Multiply 4
Integer Multiply 4 FP Divide 17
Integer Divide 30 FP Square-Root 35

branch latencies are 1, 1, and 10 cycles for taken, fallen through, and mispredicted branch
respectively. A memory read or write takes 36 processor cycles with a 64-bit bus.

We select a number of benchmarks from the SPEC benchmark suites, plus the one-
dimensional FFT implementation, and the Linpack benchmark to evaluate the optimum

issue width. Table 4.4 briefly describes each of these benchmarks.

Table 4.4: Benchmarks Simulated Using the MXS Simulation

Benchmark Description No. of Instructions
008.espresso | Logic optimization 35.6M
013.spice2gb | Circuit simulation 88.56M
022.1i LISP interpreter 12.4M
026.compress | File compression 2.5M
039.waved Electromagnetic wave analysis 30.8M
072.sc Spreadsheet 23.9M
099.go Game 80.0M
164.gzip GNU compression utility 39.3M
256.bzip2 Compression utility 131.4M
FFT Fast Fourier transform 1.1M
Linpacks Linear algebra routines 67.3M

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 69

In this investigation, we examine the range of issue width from N =1 to 8. In order
to verify the processor IPC model, we first determine IPC(00). Since the current MXS
simulator does not model an infinite-width processor, we use IPC(1), IPC(8) and Equa-
tion 4.8 to estimate I PC(oc0). The MXS simulation results are then compared with the IPC
lower bound expression in (4.9). A typical example (039.waveb) is shown in Figure 4.9. As
expected, the MXS simulation rises faster and saturates sooner than the IPC lower bound

model. In fact, these graphs look very similar to Figure 4.4 in Section 4.2.1.

IPC
o

1 2 3 4 5 6 7 8
Instruction Issue Width

Figure 4.9: Comparison of the modeled and simulated instructions per cycle (IPC) vs
instruction issue width (039.waveb).

The gaps between the MXS simulation and IPC lower bound model are small in some
benchmarks and somewhat larger in other benchmarks. The percentage difference between
the MXS simulation and IPC lower bound model is calculated by taking the largest difference
between the two across the range of N studied. For the benchmarks used in this study,
the percentage difference varies from about 2% to 12% (Figure 4.10). For instance, the
percentage difference in 039.wave5 is around 9%.

Next, we consider the effects of interconnect and other complexity overheads. As de-
scribed in the previous section, the overheads can affect either cycle time or instruction
latency depending on the implementation. However, we have examined both effects and
found that the results are similar. For brevity, we only show the results whereby the in-

struction issue width N affects only the cycle time. This corresponds to Models A, F, G,

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 70

14%
12% A
10% ~

8%
6% A
4% -
2%

0% -

Percentage Error

008.espresso
013.spice2g6
022.1i
026.compress
039.wave5
072.sc
099.go
164.9zip
256.bzip2
FFT
Linpacks

Figure 4.10: IPC percentage errors between the model and the MXS simulation.

H and I in Table 4.2.

Figure 4.11 shows the normalized processor performance as a function of instruction issue
width for the 039.waved benchmark. The overhead scaling factor O for each overhead model
is selected such that the normalized performance is between 100% to 200% for N = 1 to 4.
The graphs on the LHS correspond to the performance based on the MXS simulation, while
the graphs on the RHS correspond to the performance expression in (4.10). As expected, the
graphs in the LHS and RHS look very similar. But more importantly, we should compare
the optimum issue widths on both sides. For Models F and G, the optimum issue widths
are identical on both sides (all equals 3). For Model H, the optimum issue width is 4 on the
LHS and is 5 on the RHS. For Model I, the optimum issue width is 5 on the LHS and is 8
on the RHS. As derived in the previous section, the maxima in the performance expression
(RHS) yields an upper bound on the optimum instruction width (LHS). In case of Models
H and I, the graphs are quite flat from N = 4 to 8 so the LHS and RHS can more easily
pick a different optimum point.

Similarly, Figure 4.11 shows the relative performance as a function of instruction issue
width for the 022.1i benchmark. In this case, the optimum points in the LHS and RHS are
identical for all overhead models. While each benchmark may have a very different IPC at
a given issue width, the expression for the upper bound on the optimum instruction issue
appears to be fairly reliable for all the benchmarks. This upper bound is found to be very

close (or identical) to the actual optimum width if the performance graph has a distinct

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 71

MXS Simulation Performance Model
3 3
8 g 25
s) H] Model A
g E 21 Model F
= t
$ $159 L. | Model G
T
81 E 1 — — — - Model H
s w Sl — - —--Model |
§ E 051 o
o
4
0 : : : : : \ \ 5 ‘ ‘ ‘ ‘ ‘ ‘ :
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Instruction Issue Width (N) Instruction Issue Width (N)

Figure 4.11: Comparison of the relative performance computed using various overhead
models for the simulated IPC and modeled IPC using the 039.wave5 benchmark.

maxima, point. Conversely, this upper bound is less tight if the performance graph is flat.

Simulation Model
200% 200%

8 8
g E Scheme A
g 5 | Afmrmmm T o | e Scheme F
5 100% S 100% - Scheme G
a o
@ g ———-Scheme H
£ % —-—--Scheme |
I 4

0% . . ! ; ; . . 0% T T . . ! ! .

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Instruction Issue Width (N) Instruction Issue Width (N)

Figure 4.12: Comparison of the relative performance computed using various overhead
models for the simulated TPC and modeled IPC based on 008.espresso benchmark.

Now, we have already validated the upper bound expression on the optimum instruction
issue width. We use this expression to investigate the differences between benchmarks and
the effects of the overhead scale factor O. For simplicity, we assume that the upper bounds
are very tight so we can approximate the actual optimum issue width with these upper
bound expressions. As shown in Figure 4.13, the optimum instruction issue widths varies
across the benchmarks (from 2 to 9 when / = 10%). Some benchmarks (e.g. 256.bzip2,

FFT, Linpacks) can more effectively take advantage of additional issue widths than other

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 72

benchmarks (e.g. 022.1i, 013.spice2g6).

9
£ 8
°
=2 7 4
367
gs WO=10%
7251
247 m0=20%
53, 00=30%
E
22
O 1 4
0,

FFT

008.espresso
013.spice2g6
022.li
026.compress
039.waveb
072.sc
099.go
164.gzip
256.bzip2
Linpacks

Figure 4.13: Optimum instruction issue width for overhead scale factor O = 10%, 20%,
30%.

Finally, Figures 4.14 and 4.15 show the relationship between the optimum issue width
Noypt and the overhead scale factor O with different overhead models. Overhead models
with a stronger dependence on the issue width N (Models F and G) are less susceptible
to changes in the overhead scale factor . Above a certain value of O, the optimum issue
width is not very sensitive to any further increase in @. For a wide range of O (20% to

30%), the optimum issue width is around 5 for 256.bzip2 and around 3 for 013.spice2g6.

CHAPTER 4. PROCESSOR PERFORMANCE MODEL

40

354
30 |
25 |
20 {
151~ -~
101

Optimum Issue Width

Scheme |

— ——-Scheme H
------- Scheme G
—-—--Scheme F

Overhead Scale Factor (O)

73

Figure 4.14: Optimum instruction issue width Ny, vs overhead scale factor O based on

256.bzip2 benchmark.

Optimum Issue Width

Scheme |

———-S8Scheme H
------- Scheme G
—-—--Scheme F

Overhead Scale Factor (O)

Figure 4.15: Optimum instruction issue width N,,; vs overhead scale factor O based on

013.spice2gb benchmark.

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 74

4.4 Discussion

4.4.1 Approximation of N,

In the beginning of this chapter (Section 4.2.4), we derive a set of upper bound expressions
on the optimum instruction issue width N,,; for a variety of overhead models. Can we use
these expressions to approximate N,,;? As described in Section 4.3, these upper bounds
are mostly identical or very close to the actual optimum issue width. The only exception is
when the performance is flat near its peak. However, when the performance graph is very
flat, it may not be necessary to identify the precise optimum point.

Hence, the upper bound expressions can also serve as an estimation of the optimum
instruction issue width. Thus, we can rewrite (4.14) as (4.15). As before, o depends on the

overhead model and is between % and 1.

AIPC’)O‘ (4.15)

Vo= (%5

4.4.2 Effects of the Processor Organization

The processor organization plays an important role in determining the optimum instruction
issue width Ny,. Parameters such as the instruction window size, cache size, memory
latency, and functional units affect the available instruction level parallelism, which in turn
affects the optimum instruction issue width (Ngp).

For a fixed instruction issue width the IPC increases asymptotically to a maximum value
with increasing instruction window size. Therefore, the performance effect of increasing the
window size quickly saturates. Rudd [Rud99] determined that for VLIW processors the
instruction window size should be at least four times the instruction issue size. Figure 4.16
illustrates that when the window size is less than four times the issue width, ATPC is
smaller and the optimum instruction issue width (NN,,¢) should be smaller.

Similarly, cache size as well as memory and execution latencies affects the average in-
struction latency. For example, if the cache size is small, memory latency becomes the
processor bottleneck and the optimum instruction issue width is smaller. Figure 4.17 shows
that for a smaller cache size, AIPC is smaller and the optimum issue width is also smaller.
On the other hand, techniques such as prediction caches [Ben98] can be used to hide the

memory latency and can therefore increase the optimum issue width.

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 75

3
o 27 H £ H | | @ 2-issue
a 1.5 o g B H | | M4-issue
11 g B o | |[O6-issue
o IR B S Bil H i

12 24 36 48 72

Instruction Window Size

Figure 4.16: The instructions per cycle (IPC) as a function of window size and instruction
issue width.

4.4.3 Technology Trends

As semiconductor process technology changes, the appropriate overhead models and their
effects on the optimum instruction issue width also change. The appropriate overhead model
and the overhead scale factor O depend on the feature size.

In general, interconnect delay is increasingly more dominant than gate delay. For exam-
ple in 0.8 pum process technology, total delay is primarily determined by gate delay, which
usually grows logarithmically or linearly with the issue width N. The reverse is true in
0.18 pm process technology, when the total delay is driven by the interconnect delay, which
grows quadratically with interconnect length [Naf99]. To further examine the effects of
process technology, we again use the register file access time as our example.

As described in Section 4.2.3, a linear overhead model is used to model the effects of
instruction issue width. Now, we can apply the scaling model and calculate the overhead
scale factor O as a function of feature size. Figure 4.18 shows the relationship between
O and feature size (drawn in semilog scale). The increase in O for future technologies
demonstrates that the effects of overhead associated with the instruction issue width are
becoming more important. If we assume AIPC' to remain unchanged in the future, the

optimum instruction issue width N,,; appears to decrease at smaller feature sizes.

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 76

3
25 —— 32KB
5] 2 16KB
—=— 8KB
£ 15 e
-
05

0 1 2 3 4 5 6 7 8 9
Instruction Issue Width

Figure 4.17: The instructions per cycle (IPC) as a function of cache size and instruction
issue width.

4.5 Summary
We present a few concluding remarks in this section.

e We derive a set of upper bound expressions on the optimum instruction issue width

based on different types of complexity overheads. In general, N < (%)a where

é < a < 1. This upper bounds are found to be fairly tightly, and therefore can

also serve as an approximation. We examine a number of critical pipeline structures
including register file and wakeup logic and determine that Ny, ~ 1/AIOP ¢ in most

cases.

e For a target application, the inherent instruction level parallelism (ILP) can be found
by compiler and software simulations. Some processor architects may tend to design
the instruction issue width based on the available ILP of the application. However, it
is important to realize that the overhead (dominated by interconnect delay) can limit

the overall performance.

e Simply matching issue width to the available ILP does not always achieve the optimum
performance. For instance, assume that /PC(oo0) = 8 and IPC(1) = 0.9. Using the

overhead scale factor O = 17% (Section 4.2.3), the optimum instruction issue width

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 77

Overhead Factor (O)

35%
30% - ---a--- Decoder
---m-- Wordline

2 0, |

5% —— Bitline
20% - —»— Sense Amp
15% - Output Driver

° —— Precharge

10% - —m— Total Access Time

5% A

0%

1 0.5 0.2 0.1

Feature Size (um)

Figure 4.18: Overhead scale factor O vs feature size.

Nopt is 6. Consequently, an issue width of 6 is more cost effective and can deliver

better performance than an issue width of 8.

Alternatively, if O is low it may be desirable to have an issue width greater than
the available ILP. For instance, if IPC(o0) =4, IPC(1) = 0.9, and O = 10%, Nop
is equal to 5. This implies that if cost and power consumption are not an issue, it
is possible to achieve better performance by allowing a higher issue rate than the
available ILP of the target program. Actually, the high-end superscalar and VLIW

processors probably fall in this category.

In general, the overhead scale factor O for VLIW processors is less than that for dy-
namically scheduled superscalar processors because the issue logic is simpler. VLIW
machines are thus expected to issue more instructions per cycle. However, it is im-
portant to note that even if the overhead scale factor O in a VLIW processor is half

of that in a superscalar processor, N, is only V2 ~ 1.4 times its counterpart.

Advanced compiler techniques [WFW'94] have been used to improve the ILP in a
program. These techniques are attractive because they do not incur any hardware
cost or overhead. However, as in the case of VLIW, if the IPC is improved by 100%,

Noypt is only increased by around 40%.

CHAPTER 4. PROCESSOR PERFORMANCE MODEL 78

e The goal of Multicluster [FCJV97], Multiscalar [SBV95], and Multiflow [LFK'93]
architectures is to minimize the inherent overhead scale factor @ and thus improve
the overall performance. However, the partitioning of resources in these architectures
may have a negative impact on IPC. It is apparent from the N,,; equation that if the
reduction in O is more significant than the drop in AIPC, these architectures can

issue instructions more effectively than traditional superscalar architecture.

e Simultaneously multithreaded (SMT) [TEET96] processors are capable of executing
multiple sequences of instructions with minimum hardware overhead. The challenges
facing SMT architectures are related to cache pollution and memory contention, which
are not carefully studied in our model. The SMT architecture has a very small over-

head scale factor O, and therefore appears to be an interesting research area.

Chapter 5

IPLAN Floorplanning Framework

5.1 Introduction

As VLSI technology advances, designers are incorporating multiple processors, memory
subsystem and special hardware on a single die, forming a system-on-chip (SOC) [FHR99,
Hen99]. The Texas Instrument’s Open Multimedia Applications Platform (OMAP) [Tex], a
typical SOC shipped today, encompasses a Texas Instrument’s DSP core, an ARM’s RISC
processor core [ARM] and an integrated modem.

The SOC design complexity has reached a point where it is essential to integrate pre-
designed, synthesizable IP’s from multiple sources. While industry-wide IP standards en-
sures signal compatibility among different sources [Bri0l, Vir], SOC designers find it in-
creasingly difficult to meet all design criteria, such as clock speed and power consumption,
within a very tight design cycle [Hen99]. The conventional design flow, which separates
system-level design from physical floorplanning, becomes ineffective in the deep submicron
era. This is one of the key reasons why most SOC’s today can hardly exceed 400MHz, while
custom-made Intel’s Pentium IV can run faster than 2.5GHz [Mic02].

Our research addresses this important problem by developing an interconnect-driven
floorplanning framework, performing system-level design tradeoffs and chip floorplanning
in the early design stages. Figure 5.1 shows a simplified block diagram of the IPLAN floor-
planning framework. The floorplanning framework is composed of the MXS performance
simulator [Ben98], the area/delay estimator [FHPO0O], the interconnect estimator, and the

floorplan optimizer [HF99]. The MXS performance estimator calculates the number of clock

79

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 80

cycles required to run a benchmark. It can be used in conjunction with the interconnect-
driven processor performance model (described in Chapter 4) to optimize instruction issue
width. The area/delay estimator predicts the size and latency of a functional block. The
interconnect estimator calculates the interconnect delay and power consumption using the
estimated interconnect wirelength and congestion. The results of the three estimators are
sent to the floorplan optimizer, which determines an optimal floorplan based on the user’s
constraints and requirements. In the next section, these four components are discussed in

more detail.

IPLAN Floorplanner

MXS
Performance
Estimator

Interconnect
Congestion & Wirelength
Estimator

Area/Delay
Estimator

Floorplan
Optimizer

Figure 5.1: Simplified Block Diagram of IPLAN Floorplanning Framework

In this chapter a commercial synthesizable processor core (Lexra’s 1.X4380) is used as
an example to illustrate the functionalities of the IPLAN components and to show how
these components work together in a unified framework. The Lexra’s LX4380 is chosen
because it is a fairly popular SOC processor core. Its architecture and floorplan were
described in the literature [Sny0l, HCO1]. The Lexra’s LX4380 is a 32-bit, seven-stage
pipelined scalar processor, with a three-port register file, and a Harvard bus structure.
It executes the MIPS-I instruction set and runs at 266MHz in a 0.18-micron technology.
The processor core can further be extended with coprocessors and custom logic. Since
the detailed microarchitecture specifications are not publicly available, we have made some

general assumptions, including the number of interconnections among the functional blocks

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 81

and the timing constraint within each functional block.

5.2 Components in IPLAN Framework

This section describes the four key components in IPLAN floorplanning framework: the
MXS performance simulator, the area/delay estimator, the interconnect estimator, and the

floorplan optimizer.

5.2.1 MXS Performance Simulator

There is a tradeoff between simulation accuracy and simulation performance. In general, a
more accurate simulation usually takes a longer simulation time. There is a wide range of
techniques available for performance evaluation. These techniques may be broadly classified
into four categories: analytical models, trace-driven simulation, execution-driven simulation
and hardware-driven simulation.

Analytical models are the fastest but the least detailed method among all the simulation
styles. The processor performance model discussed in Chapter 4 is an analytical model, in
which the TPC of a processor may be estimated based on a few input parameters. While
the analytical models are very straightforward, they do not encapsulate all implementation
details, resulting in estimation errors. In trace-driven simulation, the output of an applica-
tion is used to drive the simulation. As such, the simulation result is more accurate than
analytical models. A survey of different trace-driven simulation techniques by Uhlig and
Mudge may be found in [UM97].

In execution-driven simulation, the application drives the simulation directly. In this
style of simulation, the simulator reads the application into memory and emulate every
operation in an instruction. As a result, the simulation accuracy is better than the previous
two techniques at the expense of slower simulation performance. Finally, hardware-driven
simulation employs hardware techniques to collect simulation statistics. For instance, some
processors are equipped with hardware event counters, collecting vital processor informa-
tion. While the hardware-driven simulation is very accurate, they tend to be the least
flexible. Generally speaking, hardware-driven simulation techniques are used for verifying
the hardware behaviors but they are not suitable for evaluating tradeoffs in the early design
stages. In the IPLAN floorplanning framework, it is important to maintain a high degree of

both flexibility and accuracy. Based on these requirements, an execution-driven processor

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 82

simulator — MXS Simulator — is chosen.

The MXS processor performance simulator is an C-based execution-driven superscalar
processor simulator, originally developed by James Bennett in the SGI IRIX operating sys-
tem environment [Ben98]. As the MXS simulator is execution-driven, it can accurately
model instruction timing, cache system, memory system, and other critical processor com-
ponents, such as translation lookaside buffer (TLB). Figure 5.2 shows the block diagram
of the MXS Simulator. The benchmark program is first processed by the MXS compiler,
performing simple static instruction scheduling. The compiled benchmark is then read by
the MXS simulator that simulates each instruction in the program. During the simulation,

the useful statistics are written to output files.

Benchmark

Processor &
Memory
Subsystem
Configuration

Results of
Simulation

Figure 5.2: Simplified MXS Simulator Block Diagram

In order to achieve an efficient simulation performance, the MXS simulator combines a
cycle-based simulation with an event driven simulation. Every cycle the simulator performs
a number of regular tasks, such as instruction fetch, register renaming, instruction issue,
memory access, register writeback and instruction graduation. In addition, it also checks
for an event queue that handles events that completes in that cycle. Figure 5.3 shows a

simplified diagram of the simulation architecture.

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 83

Load/Store
Queue

Prioritized
Queue

Instructions

Worklist
Processing

Instruction
Execution

Memory/Cache
Access

Every Cycle

Figure 5.3: Simplified MXS Simulation Architecture

The MXS simulator was slightly modified and adapted to the IPLAN floorplanning
framework. In order to work with other tools in the framework, the MXS simulator was
ported from the SGI Irix operating system to the Solaris and Linux operating systems,
Some useful features and functionalities were also added. For example, only a single-level
data cache system was modeled in the original MXS simulator. To improve its usability, a
configurable instruction cache and a two-level cache simulation (based on the inclusion prin-
ciple) [Fly95] were included in the MXS simulator. In the past, all the processor parameters
are hard-coded in the header files, which means that the simulator has to be re-compiled
every time any processor parameter is altered. In the IPLAN framework, a Motif graphical
user interface (GUI) was added to allow users to modify any processor parameters on-the-
fly. Figure 5.3 shows the GUI in SUN/Solaris. Before simulation, MXS reads the user
configurations defining the processor microarchitecture, such as issue width, bandwidth,
latency and branch policy. The MXS simulator emulates the processor instruction fetch, in-
struction decode, register renaming, instruction execution, memory load/store and register
writeback. At the end of simulation, MXS reports the number of cycles and other statistics
in the GUI. The statistical information is also written to an output file to be read by the
floorplan optimizer.

In system-level design, it is crucial to simulate the entire system, including multiple
processors, memories and hardware IP’s. As a result, it is often necessary to co-simulate
different system-level components at the same time using multiple simulators. Since the
MXS simulator is a C-based simulator, it can easily simulate in conjunction with other
C/C++ based simulators, such as the SIMOS simulator RHWG95] and the SystemC simu-
lator [Sys|. The SIMOS simulator provides an accurate and flexible simulation environment

for both the hardware and the operating system. The MXS simulator was incorporated

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 84

File Edit Basic Cache Run Project Help
Running benchmark uncompress... A
Cycles: 886586

Instructions: 686454

IPC: 0.774

L1 Miss Ratio: 6.400%

Bus utilization: 8.404%

Running benchmark espresso...

Cycles: 3314811
Instructions: 2380513
IPC: 0.718
L1 Miss Ratio: 7.017%
Bus utilization: 10.080%

Running benchmark fft...

Cycles: 377701

Instructions: 283799

IPC: 0.751

L1 Miss Ratio: 12.087%

Bus utilization: 17.438% -

Figure 5.4: MXS Performance Simulator Graphical User Interface

into the SIMOS simulation environment, as its most detailed simulation engine. Similarly,
the SystemC simulator can work with the MXS simulator in a co-simulation environment.
SystemC, which consists of an open-source C++ library and a simulation kernel, is the de
facto system level description language [Sys|. Other system-level C/C++ based simula-
tors include the Cadence Cierto VCC simulator [Cad] and the CynLib and SpecC simula-
tors [FHOL].

5.2.2 Area/Delay Estimator

The area/latency estimator is built upon the research works by McFarland [McF97] and
Fu [Fu99]. McFarland developed a technology scaling model for digital CMOS circuits by
examining the electrical limits of MOSFETS, including subthreshold leakage, short channel
effects, gate induced drain leakage, gate tunneling current, time dependent dielectric break-
down and hot carrier effects. McFarland’s model is accurate to about 0.1 micron feature

size. Fu extended McFarland’s model by investigating the area-time relationship for floating

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 85

point units and on-chip storage.

The area/latency estimator encompasses a library of area/latency models for major
functional units in a processor, including the register file, cache, translation-lookaside buffer
(TLB), floating-point unit (FPU), etc. For example, the estimator can predict the cache
area and latency by simply specifying the cache size, the cache configurations and the VLSI
technology. Conversely, given the target application, the feature size and the available FPU
die area, the estimator can also suggest the optimal hardware algorithms and latencies for

different FPU operations (e.g. floating-point addition, multiplication, etc.) [Fu99].

5.2.3 Interconnect Estimator and Floorplan Optimizer

After the area of each functional block is estimated, the functional blocks are input to the
front-end floorplan graphical user interface (GUI). The IPLAN floorplan GUI was written
in Tcl/Tk, and the floorplanner engine (interconnect estimator and floorplan optimizer)
were written in C. The interconnect estimator is responsible for estimating the wirelength
within each functional block and wire congestion among the functional blocks, while the
floorplan optimizer is responsible for determining an optimal floorplan based on a user-
defined objective function. The mktclapp utility is used to simplify the interface between
the Tcl/Tk and the C programs.

The GUI allows user to manipulate block placements and the interconnections. Users
can easily create/delete blocks and interconnections, modify their sizes and positions. The
placement and interconnection information is passed to the floorplanner engine to perform
floorplan optimization. The interconnect estimator can model via minimization, routing
obstacles, rectilinear blocks, routing among blocks and ports. Figure 5.5 shows two routing
obstacles (Obstaclel and Obstacle2) blocking the interconnections between two functional
blocks (BlkO and Blkl). The congestion estimator predicts some routing congestion (de-
picted in dark squares) near Obstaclel.

As described in the previous section, Lexra’s 1.X4380 is used as an example to illus-
trate how the floorplanner works. In Figure 5.6, the functional blocks and interconnections
in Lexra’s LX4380 are manually input to the floorplanner GUI. The 1.X4380 chip com-
prises of 12 functional blocks: RPA, DCACHE, IMU, MMU, CE, COP, IF, REGFILE,
JTAG, DMATCH, IMATCH and CBI. The RPA is the 1.X4380’s core, which consists of the
main controller and its execution units. The REGFILE is the processor register file. The
DCACHE and IMU are the data cache and the instruction fetch/cache unit. The MMU

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 86

j 1o x]
Eis Ed Derly Corauie Helo

’E -

Ohstacle]
Ohatale?
[1

T i

]

Module name: W count: e Wi length:

Hew naens: Hews count: I Y e Totallengthe 200273001190

Figure 5.5: IPLAN Routing Obstacle Example

consists of the translation lookaside buffer (TLB) and the memory management unit. The
COP, CE and IF are the coprocessor and the extension interfaces. The JTAG, IMATCH,
DMATCH and CBI are the extended JTAG blocks for on-chip testing. The block place-
ments are optimized at this point. In this example, the sizes of the functional blocks were
taken directly from the published data, but it is also possible to use the area/delay estimator
to predict their areas.

Using the area and wirelength objective function described in Section 3.3, the chip area
and the total wirelength can both be minimized by the floorplan optimizer. The floorplan
optimizer was based on the algorithm developed by Maggie Kang [Mag98b, Mag98a] and
integrated into the IPLAN floorplanning framework. It uses simulated annealing technique
to constantly change the floorplan and search for an optimal solution. In this example, there
are only 12 functional blocks and the floorplan optimizer only takes a few seconds using a
300MHz SUN Ultra 10 workstation. Figure 5.7 shows the floorplan after the optimization.
Internally the floorplan is represented by the sequence pair ((DCACHE, IF, REGFILE,
RPA, CE, COP, IMU, DMATCH, JTAG, CBI, IMATCH, MMU), (IMU, CE, COP, RPA,
DCACHE, IF, REGFILE, MMU, IMATCH, JTAG, CBI, DMATCH)) [MFNK95].

In previous floorplan, there is a tiny space in the middle of the RPA, REGFILE, JTAG,
DMATCH and MMU blocks. The floorplan can further be compacted by changing the

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 87

e o [=)
G Bt Denity Confowe telo

E I |E0j
MATCH

Modue name: APA Wiee courk: 4 e Wirelenghc 4EIG1ANTIZE
Hew raarnes M exnrd f e Tetal longlh KONG5 SE56T

Figure 5.6: IPLAN Interconnection Example (Lexra’s LX4380)

RPA block from rectangular shape to rectilinear shape (Figure 5.8). Please note that this
is possible only because the RPA block is a synthesizable, soft IP block. Conceptually, the
rectilinear RPA block is basically composed of three horizontal rectangular blocks.

Figure 5.9 describes the sequence pair structure in Figure 5.7. Basically, each sequence
pair defines the relative positions among the blocks. In this example, there are three blocks
(DCACHE, IF, REGFILE) located on the top of the RPA block, five blocks (DMATCH,
CBI, JTAG, IMATCH, MMU) located on the right-hand-side of the RPA block, and three
blocks (IMU, CE, COP) located on the bottom of the RPA block. During the optimization
process, the sequence pair is constantly mutated in order to find an optimal floorplan with
minimum area and wirelength.

The width and the height of the floorplan can easily be calculated from the sequence
pair. Figure 5.10 shows the horizontal floorplan constraint graph, in which the longest
path between the end points determines the floorplan width. In this example, the floorplan
width is the sum of the widths of the IMU and MMU blocks. Similarly, Figure 5.11 shows
the vertical floorplan constraint graph, in which the longest path between the end points
determines the floorplan height. In this example, the floorplan height is the sum of the
heights of the IMU, COP, RPA and REGFILE blocks.

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 88

=0l
Hel
Sedln
%
G | DMATCH
DCACHE TF| RE
mac| con o
INATCH
KPA
CE Cor MMU
)
Mockda ramer Wi court: W dm wee longih
M nama: [Maw court: e Tt kength: oo

Figure 5.7: 1L.X4380’s Floorplan after Optimizaton

=10 x|
Hel
Seake
[
DMATCH
DCACHE IF REGFILE. m]J
JTAG| CDD
IMATCH
RPA
CE CoF MU
MU
Winduin name: Win count: ' hw W length
M rsetes: Meweowr | ¥ dimc Total lergth: 04070.0

Figure 5.8: LX4380’s Floorplan after Optimization and Compaction

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 89

Figure 5.9: Sequence Pair Representing LX4380’s Floorplan

DCACHE IF REGFILE — DMATCH
RPA FJTAG — csl
CE cop \— IMATCH jf
MU MMU

Figure 5.10: Floorplan Horizontal Constraint Graph

CE DCACHE
IMU { } RPA r IF T
CcopP L REGFILE J
JTAG
MMU —— IMATCH { } DMATCH
CBI

Figure 5.11: Floorplan Vertical Constraint Graph

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 90

5.3 Case Study

In this section, a design scenario is fabricated to demonstrate how the different IPLAN
components work together in a unified framework. The size of the Lexra’s LX4380 core is
1.8mm? (1.3mm x 1.3mm) in a 0.18 micron technology [Sny01]. Suppose we would like to
develop an enhanced version of LX4380 with a bigger core area. What is the most effective
way to utilize the extra real estate?

A simplistic approach is increase the cache size. The data cache size in LX4380 is 32KB.
By increasing the data cache from 32KB to 64KB, the data cache miss rate can be further
reduced. Using the IPLAN floorplanning framework, we can build a virtual “prototype”
and evaluate its architecture. The first step in the IPLAN framework is to run the MXS
simulator to calculate the IPC. Table 5.3 shows the baseline processor parameters in our
evaluation. Please note that these processor parameters are based on our assumptions and

can be very different from any particular chip design.

Table 5.1: Lexra’s LX4380 Processor Core Baseline Parameters

‘ Parameter H Baseline Value
Fetch # per cycle 1
Issue # per cycle 1
Writeback # per cycle 1
Dynamic Scheduling yes
Cache Level 1
Cache Size 32KB
Cache Associativity 4-way set associative
Cache Policy writeback/write-allocate
Cache Hit Latency 1 cycle
Memory Latency 20 cycles
Bus Width 64 bits
Bus Latency 4 cycles
Integer Add/Subtract 1 cycle
Integer Multiply 4 cycles
Integer Divide 30 cycles
FP Add 2 cycles
FP Multiply 3 cycles
FP Divide 12 cycles
Branch 2 cycles
Branch History Table Size 1024

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK

91

Using the SPEC benchmarks, we run the MXS simulator and compare the miss rates

at 32KB and 64KB cache sizes. As shown in Figure 5.12, The effects on the miss rate and

IPC depend heavily on the target benchmark.

7.00% 1

6.00% -

5.00%

4.00% -

Miss Rate

3.00% -

2.00% A

1.00% A

0.00% -
compress espresso linpacks

sc spice

Benchmark

uncompress wave

W 32KB Cache
W 64KB Cache

Figure 5.12: Miss Rates with 32KB and 64KB Cache Sizes

lisp

In case of the espresso, sc, uncompress and lisp benchmarks, the miss rates with 32KB

data cache are already very small (less than 1%). For these types of target applications,

increasing the data cache size can only yield marginal IPC improvements. On the other

hand, the compress and spice benchmarks have higher miss rates and can more effectively

take advantage of the additional cache size. For example, the IPC is increased from 0.753

to 0.817 for the compress benchmark (Table 5.3).

Table 5.2: MXS Simulation Results for the Compress Benchmark

Original || Non-pipelined

Core 64KB Cache
Number of Instructions 2.13M 2.13M
Number of Cycles 2.83M 2.61M
IPC (compress) 0.753 0.817
Miss Rate 5.88% 3.79%
Bus Utilization 10.2% 7.0%

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 92

The second step in the IPLAN framework is to use the area/delay estimator to calculate
the new cache area and cache latency. In general, the cache area is roughly proportional
to the cache size, so the 64KB cache area is approximately double the 32KB cache area.
The cache latency has a logarithmic relationship with respect to the cache size. Figure 5.13
shows that the 64KB cache is about 10% slower than the 32KB cache.

4.5 4

3.5 1
34
2.5
2 |
1.5
14
0.5 1
0 - ; ; : :
4KB 8KB

16KB 32KB 64KB

Data Cache Size

Data Cache Latency (us)

Figure 5.13: Cache Latency vs Cache Size

After performing the performance and the area/delay estimation, the last step is to
run the floorplanner, which calculate the interconnect delay and determines an optimal
floorplan. Figure 5.14 shows an optimized floorplan with 64KB data cache. The aspect
ratios and the shapes of the RPA and the IF blocks were slightly altered manually to make
the floorplan more compact.

The new processor core area is only slightly bigger than the original one with 2.1mm?
(1.6mm x 1.3mm). With the increased cache size, the critical path in this design is the
data transfer between the DCACHE and the RPA blocks. Since these two blocks are
connected side by side, the interconnect delay is primarily caused by the local interconnect
in the synthesized RPA block. The interconnect delay is estimated based on the wirelength
distribution model, and assuming that the local interconnect width and spacing are 0.27um
and 0.18m, respectively.

Table 5.3 summarizes the performance of the new and the original architecture. Even

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 93

T ~iglxl
fie Ede Dervity Configuie Help
Scaln
1%
DMATCH
DEACHE REGFILE 100 :I
JTAG <pl
DMATCH
RPA
cor MMU
CE
U
¥
Module name: W count: e Wise lnngt
Hew rae: M courk: Y denc Total length: XSG00

Figure 5.14: Optimized Floorplan with a 64KB Data Cache

if we run a benchmark that requires more cache size (e.g. compress), the additional cache
size actually has a negative impact on the performance! Th interconnect delay in a larger
cache slows down the processor clock, and the increase in IPC is insufficient to offset the

decrease in the clock speed.

Table 5.3: Comparison between the Original Architecture and the Modified Architecture
with a Non-pipelined 64KB Data Cache

Original || Non-pipelined
Core 64KB Cache
Die Size 1.8mm? 2.1mm?
Cache Latency 3.6 ns 4.1 ns
Interconnect Delay 0.1 ns 0.1 ns
Maximum Clock Frequency | 267 MHz 238 MHz
IPC (compress) 0.753 0.817
Relative Performance 1.00 0.97

An obvious alternative to the previous approach is to use a two-stage pipelined cache.
This technique is actually used in a number of other Lexra’s chips [Sny01]. Figure 5.15
compares the block diagrams of a non-pipelined cache and a two-stage pipelined cache. As

shown in the diagram, there are additional latches in the pipelined cache. Here, we assume

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 94

that the additional area for these latches is negligible so we can use the same floorplan as
before. Although the two-stage pipelined cache incurs an extra clock cycle for cache access,

this latency can be usually be tolerated and hidden in the processor pipeline.

Data Address Data Address
Tag RAM Data RAM Tag RAM Data RAM
(Set 1) (Set 1) (Set 1) (Set 1)
Tag (Set 2) Data (Set 2) Tag (Set 2) Data (Set 2)
| I | I
1 1 1 1
+Eeg| —|->$eg| |Ref<-|:. —|->$eg| |Rej<-|:‘ —|->$eg| —|->ieg| |Ref<-|:. —|->ieg| |Rei<-|:.
Tag Compare MUX Tag Compare MUX
and Control and Control
\—> Aligner \—> Aligner
\ Y
Read Data Read Data

(a) Non-Pipelined Cache (b) 2-Stage Pipelined Cache

Figure 5.15: Block Diagrams of Non-pipelined Cache and 2-Stage Pipelined Cache

Using the MXS simulator, the IPC reduction caused by the extra cache cycle is found to
be between 2% to 4% for the above benchmark programs. Table 5.3 details the performance
of the pipelined cache. While the performance improvement is only 4%, the reduction in
bus utilization is more than 30%. When there are multiple bus masters (e.g. processors or
DMA controller) in the system, this reduction in bus utilization can be very important to
the overall system-level performance.

The previous exercise reinforces the fact that increasing the cache size alone cannot
provide very significant performance improvement. A more effective approach is to use a
superscalar processor architecture. As discussed in Chapter 4, the optimum instruction
issue width can be approximated by \/% where O is between 10% to 20%. In general,
AIPC can be found by running the MXS simulator. For the SPEC benchmarks described
in Chapter 4, we can simply use the results in Chapter 4 and the optimum issue widths vary

between 2 and 6. As most SOC applications are cost-sensitive, the issue width is limited

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 95

Table 5.4: Comparison between the Original Architecture and the Modified Architecture
with a 64KB 2-Stage Pipelined Data Cache

Original || Non-pipelined
Core 64KB Cache
Die Size 1.8mm? 2.1mm?
Maximum Clock Frequency | 267 MHz 267 MHz
IPC (compress) 0.753 0.794
Maximum Clock Frequency | 267 MHz 267 MHz
Relative Performance 1.00 1.056
Bus Utilization 10.2% 6.8%

conservatively to only 2 instructions. Thus, we consider the design alternative of using
a 2-way superscalar processor. Now, superscalar processors can more effectively hide the
latency in the pipeline stages. Thus, it makes sense to use a larger, pipelined cache instead
of a smaller, non-pipelined cache. Table 5.3 compares the performance of a 32KB data
cache and a 64KB pipelined data cache in a 2-way superscalar processor. For the compress
benchmark, the pipelined 64KB cache has a much lower bus utilization and is decidedly
faster than the 32KB cache.

Table 5.5: Comparison between a 32KB non-pipelined data cache and a 64KB 2-stage
pipelined data cache in a 2-way superscalar processor

| [32KB Cache || 64KB Cache |

IPC (compress) 1.03 1.13
Maximum Clock Frequency 267 MHz 267 MHz
Relative Performance 1.00 1.10

Miss Rate 5.80% 3.38%
Bus Utilization 14.1% 9.8%

To avoid any performance bottleneck, duplicate functional units and a larger register
file (with more read/write ports) are needed in the dual-pipeline. Figure 5.16 shows an
estimated floorplan with 3.0mm? area. In this case, the data cache is pipelined and the
interconnections within the processor core are relatively short. As a result, the processor
speed is estimated to be same as before. Table 5.3 summarizes the performance of the

different design alternatives.

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 96

Table 5.6: Summary of Different Design Alternatives

Original || Non-pipelined Pipelined Superscalar
Core 64KB Cache 64KB Cache Core
Die Size 1.8mm? 2.1mm? 2.1mm? 3.0mm?
IPC 0.753 0.817 0.794 1.13
Clock Speed 267MHz 238MHz 267MHz 267MHz
Relative Performance 1.00 0.97 1.05 1.50
ESS—— SImi
DCACHE RPA me | cm m:l
[Trem— W oot . dim Wie lengghc
Haw rusera: [heweewe [¥dm Tees langth HE000.0 |

Figure 5.16: Optimized Floorplan with Dual Issue

The IPLAN floorplanning framework allows system-level designers to quickly evaluate
the architecture and estimate its performance in the deep submicron era. As shown in
this case study, designers can easily build many “prototypes” within a few hours and then
examine the tradeoffs among these design alternatives. After the design is finalized, the
floorplan can then be used to drive the physical layout. The simulation environment can

also be used for system-level verification and validation.

5.4 Summary

The purpose of this chapter is to illustrate how the previous chapters come together in a uni-

fied framework. This interactive floorplanning framework, known as IPLAN, encompasses

CHAPTER 5. IPLAN FLOORPLANNING FRAMEWORK 97

four major components: the interconnect estimator, the MXS performance simulator, the
area/delay estimator, and the floorplan optimizer.

The interconnect estimator is based on the wirelength distribution model presented in
Chapter 2 and the wire congestion model presented in Chapter 3. The MXS simulator,
which is an execution-based performance simulator, is used to model the microarchitecture
in a superscalar processor. It can also be used in conjunction with the interconnect-driven
processor performance model (Chapter 4) to determine the optimum instruction issue width
in a processor. The area/delay estimator, which was developed based on the research work
by Steve Fu and Grant McFarland, can be used to estimate the area and latency of a
functional block. The results of these three estimators are sent to the floorplan optimizer,
which determines an optimal floorplan based on the user’s constraints and requirement.
While most commercial floorplanning tools use a slicing floorplan structure to represent
their floorplans, the IPLAN floorplanner uses the sequence-pair structure to represent non-
slicing floorplans because a non-slicing floorplan are much more compact and efficient than
a slicing floorplan. This is useful for area and wirelength optimization, and particularly
important when the number of blocks are not too big (< 50).

In this chapter, the Lexra’s LX4380 processor is used as an example to describe the
different stages in the floorplanning process. It is also used to describe the different features
in the IPLAN graphical user interfaces (GUIs). In Section 5.3, a design scenario is fabricated
to illustrate how the different IPLAN components work together. In addition, this chapter
also show how to develop quick prototypes and perform architectural tradeoffs in the IPLAN

floorplanning framework.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Since the advent of the microprocessors, system-on-chip (SOC) is arguably the most im-
portant development in semiconductor industry in the past 20 years. According to Gartner
Group, the market of SOC devices was about $20 billion in 2000 and is expected to grow to
$60 billion in 2004 [Lew01]. By integrating hundreds of millions of transistors on a single
die, complicated and power-efficient electronic systems (e.g. cellular phones) are affordable
to the masses and become pervasive in every countries in the world.

While the SOC technology creates tremendous market opportunities in the semiconduc-
tor industry, it also presents many technical challenges for the existing CAD design tools.
In particular, the traditional ASIC design methodology separates architectural design, logic
design and physical design into three distinct phases, preventing efficient optimizations and
effective design tradeoffs across the different design phases. This problem becomes increas-
ingly more serious in SOC designs, where interconnect properties are the limiting factor in
determining system performance, power consumption, signal integrity, reliability and man-
ufacturing yield. This is one of the key reasons why many SOC’s have problems surpassing
400MHz, when custom-made, high-end processors have already exceeded 2.5GHz.

Although interconnect-driven synthesis tools are gaining wider acceptance in recent
years [Mag, Mon], interconnect-driven design methodologies and CAD tools are still miss-
ing in architectural design phase, often resulting in multiple design iterations and sub-
optimal designs. Consequently, many design projects are unnecessarily canceled because

these projects either cannot meet the system requirements (e.g. power and performance)

98

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 99

or take too long and miss the entire market windows.

The IPLAN floorplanning framework provides a new design methodology, allowing users
to build rapid prototypes with floorplans and quickly evaluate their designs (e.g. in terms of
cost, power and performance) in architectural design phase. This floorplanning framework,
which encompasses three statistical interconnect models described in Chapters 2, 3 and 4
(wirelength distribution model, wire congestion model and interconnect-driven processor
performance model), are useful to estimate the effects of interconnect in the early design
stages. Our experimental results show that these interconnect models are more accurate
and flexible than the previous models. Besides chip floorplanning, these models can be used
in routing algorithms as well as yield estimation.

In addition to the interconnect estimator, the IPLAN floorplanning framework also con-
sists of a performance estimator, an area/delay estimator and a floorplan optimizer. As
described in Chapter 5, the results of the three estimators are provided to the floorplan
optimizer, which determines an optimal floorplan based on the user’s constraints and other
specifications. In the IPLAN floorplanning framework, designers can easily modify design
parameters (e.g. cache size, pipeline stages, issue width) and then quickly optimize the
floorplans and examine the new system design costs and performances. This rapid proto-
typing approach minimizes design risks, avoid expensive redesigns and effectively shorten
design schedules.

As feature size continues to shrink, “interconnect-driven architectures” are becoming a
necessity. Our research concludes that “interconnect-driven architectural design tools” —

such as the IPLAN floorplanning framework — are very useful and effective in SOC designs.

6.2 Contributions of this Dissertation

The main contribution of this work is the development of an interconnect-driven floorplan-
ning framework (IPLAN), which allows chip designers to evaluate architectural tradeoffs in

the early design stages. The other contributions of this work are summarized below:

e The development of a statistical a priori wirelength distribution model, which takes
routing obstacles and the aspect ratios of the block and library cells into consideration.
The wirelength distribution and the average wirelength estimation are more accurate

than the previous models.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 100

e The development of a statistical wire congestion model, which takes routing obstacles
and via minimization into consideration. A fast algorithm was developed to efficiently

calculate the routing density.

e The development of a floorplanning algorithm, using the sequence pair structure and

based on the simulated annealing technique.

e The development of a processor performance model, which takes interconnect and
complexity overheads into consideration. The development of a variety of interconnect
and complexity overheads, including wire delay with repeaters, wire delay without

repeaters and gate delays.

e The derivation of an upper bound on the optimum instruction issue width. This upper

bound is quite tight and can therefore be used to estimate the optimum issue width.

e The graphical user interfaces for the IPLAN framework, which includes the floorplan

placement user interface and the Motif interface for the MXS simulator.

e Other MXS enhancements, including porting the tool to Solaris and Linux and the

support for instruction cache and second-level cache.

6.3 Future Work

The SOC design is a dynamic and changing field, consisting of many new technologies and
unanswered questions. How do we utilize 10 billion transistors effectively? How do we
verify such complicated SOC designs? How do we perform effective system design making
trade-offs at all levels? How does the future on-chip interconnect system looks like? How
do we partition design between software and hardware? How do we model and synthesize
from complex behavioral models? It is virtually impossible to enumerate all the possible
future directions regarding the IPLAN floorplanning framework. A short list of possible

future work is listed below.

e Ideally the IPLAN floorplanning framework would allow users to build their chip
automatically based on their specific design constraints and system requirements.
This implies that the IPLAN framework needs to manage a database of pre-qualified

intellectual properties (IP’s). A logical extension of our research is to examine the

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 101

interconnect-driven IP interface issues (e.g. timing constraints, interconnect loading),
ensuring that all reusable IP blocks (e.g. soft IP’s, hard IP’s, hard IP’s) from different

vendors are fully compatible [Vir].

e Another related issue is the SOC verification. This involves software, hardware and
communication verifications [MS96]. Even for pre-qualified IP’s, the interconnection

timings and the communication protocols still need to be verified.

e In order to model a more realistic software workload, the MXS simulator needs to
be extended to support different real-time operating systems (e.g. eCOS, VxWorks,
LynxOS). On the hardware side, the MXS simulator can be integrated to the SystemC

or System Verilog simulation environment to better model custom IP blocks.

e The current IPLAN floorplanning framework uses the MXS simulator, which models
a dynamically-scheduled superscalar processor. In order to model multiple processors,
we need integrate a multiple-processor simulator (e.g. ABSS simulator [Dwi98]) into

the IPLAN floorplanning framework in the future.

e As power consumption becomes critical in many mobile applications, the IPLAN floor-
planning framework can be improved by adding high-level power modeling, estimation
and optimization. For instance, instruction-level power estimation [TMWL96] or sim-
ilar techniques can be used in the performance simulator to estimate software power

consumption.

Appendix A

Structural Wirelength Distribution

Function

A.1 Introduction

The structural wirelength distribution function s(/) is defined as the number of all possible
connections between two gates in a structure. An elegant way to compute such an enumera-
tion is proposed by Stroobandt [Str96], which is based on a representation of the wirelength

distribution by its moment generating polynomial G(z).

)
G(z) =) s(l)a! (A1)
1=0

The moment generating polynomial contains all the information regarding the wire-
length distribution, and it provides a simple way to compute the average wirelength as
well as all higher order moments. Each moment may be calculated by differentiating G()
as many times as the order of the moment and evaluate the results for x = 1. For in-
stance, the average value (first moment) of the structural wirelength distribution function
is equal to G’(1). An important property is that the moment generating polynomial of a
convolution of two wirelength distributions is the product of the generating polynomials of
each distribution. This property is very useful because the structural wirelength distribu-
tion function of a two-dimensional structure can then be calculated from one-dimensional

structural wirelength distribution functions.

102

APPENDIX A. STRUCTURAL WIRELENGTH DISTRIBUTION FUNCTION 103

A.2 Building Generating Polynomials of One-Dimensional

Structures

In this section, we calculate the moment generating polynomials of some simple one-
dimensional structures. These one-dimensional moment generating polynomials are used to
derive the structural wirelength distributions of the two-dimensional structures in the next
section. The first case is to consider two chains of n nodes arranged in a one-dimensional
Manhattan grid. The two chains are assumed to be different but they are connected di-
rectly at every single node (Figure A.1). The distance between P; and P; is abs(i — j). By

inspection, the structural length distribution function s1(1) is as follows.

n ifl=0
sil) =% 2(n—1) if1<I<n (A.2)
0 otherwise

The moment generating polynomial G (z,n) is shown in Equation A.3.

2:157“rl —nz? =2z +n

Gi(z,n —n—i—z 2(n =Dz

(z —1)?
. oF
chamt R R % A S
‘ : ‘ | | ‘ : ! distance = 0
Chain2 & | i i P i . 1 i Vi

0 1 2 eoe i oo j .oe n-1

Figure A.1: Two chains of nodes connected at every node in a 1-D Manhattan grid

The second case is to consider two chains of nodes that are connected at one end (Fig-
ure A.2). One of the chains has m nodes whereas the other one has n nodes. In this
diagram, the distance between P; and P; is equal to 7+ j. The moment generating function
Ga(xz,m,n) is equal to the product of two zero-dimensional moment generating functions
(Equation A.2)

m—1n—1 n
GQ(lE m, ’I’L szl+k+1 $ _1)(17 _1) (A4)

—1)2
= 1= =

APPENDIX A. STRUCTURAL WIRELENGTH DISTRIBUTION FUNCTION 104

Chain1 © @ O
distance = 0
|
Chain2 O o o

0 1 2 coo i cos j .o n-1

Figure A.2: Two chains of nodes connected at one end node in a 1-D Manhattan grid

The last case is to consider two chains of nodes that are connected at both ends (Fig-
ure A.3). In this diagram, each of the chains has n nodes and the distance between P; and
P; is equal to min(i + j,2n — (i + j)). The moment generating function G3(x,n) in this

case may be derived by inspection (Equation A.5).

n—1
o w(z" — (4 1)z + 1)
Gg(x,n):nx”+2;l.xz: 1) (A.5)
Chain1 5‘ =P’ ’3 /1\
‘ i distance = 0
Chain2 ¥ B ; v

0 1 2 s i eoe j .o n-1

Figure A.3: Two chains of nodes connected at two end nodes in a 1-D Manhattan grid

A.3 Generating Polynomials for More Complicated Archi-

tectures

In this section, we use the one-dimensional moment generating polynomials calculated in
the last section to derive the moment generating functions and the structural wirelength

distribution functions of two-dimensional structures.

A.3.1 Rectangular Block

The first two-dimensional example is to consider a m x n rectangular block (Figure A.4).
The Manhattan distance between any two points in the rectangular block is the sum of
their horizontal distance and their vertical distance. Apparently, the structural wirelength
distribution is the convolution of two one-dimensional distributions (G (z,n) and G (z,m)).

However, please note that this number of interconnections has to be divided by two because

APPENDIX A. STRUCTURAL WIRELENGTH DISTRIBUTION FUNCTION 105

Figure A.4: m x n Rectangular Block

the two end points (P; and Pj) are symmetrical so twice the number of interconnections

have been counted. The moment generating function of a rectangular block G4(z,m,n) is
derived in (A.6).

Gi(z,m) - Gi(z,n)

G4($7m7n) = 9
2z —ma? — 22 + m) (22" — nx? — 21 + n)
B 2(x — 1)4
_ QpmAn+2 _ pemA3 _ 9 m+2 + nrmtl — gt t3 — 9pnt2 + mz™ ! ..
- T (A.6)

To obtain a more manageable closed-form expression, we define f;(n,i) as in Equa-
tion A.T.

(n—10-1)!
(i — Dl (n—1-1)!

filn,1) = n—i-1Ci1 = (A7)
Using the definition in (A.7), G4(z,m,n) can be simplified as in (A.8). By comparing
the coefficients in the moment generating function, the structural wirelength distribution

function of a rectangular block can be found as listed in Table A.1.

m+n—2 m—1

Gi(z,m,n) =2 Y film+n+2,4)2' —n) film+3,4)z'—
=0 =0
m—2

m—3 n—1
2> fim 42,4z +n > film+ 1,43 —m_ filn+3,4)z" -
n—2 n—3

2> filn+2,4)2' +m_ filn+1,4)z! (A.8)

=0 =0

APPENDIX A. STRUCTURAL WIRELENGTH DISTRIBUTION FUNCTION 106

Table A.1: Structural Length Distribution Function for Rectangular Block

‘ Range H s4(1) ‘
1<i<n B — (m +n)l? 4 Smo-ly
n<l<m —n2l+mn2+w

m+n—0)2—1)(m+n—1
m<Il<m+n-—2 (21X)

A.3.2 L-Shaped Block

m

Figure A.5: L-Shaped Block

The second two-dimensional example is to consider an L-shaped block (Figure A.5). The
moment generating function can be calculated by first considering is a m x m square block
and then removing a n X n square block from its corner. By removing the n x n square block,
we not only need to remove the interconnections within the n x n block but also remove the
interconnections from the n x n block to the L-shaped block. The L-shaped block may be
sub-divided into three rectangular blocks (an n x m —n block, an m —n x m —n block and
an m — n x n block). Thus, we need to remove the interconnections from the n x n block

to these three blocks (Equation A.9).

2 2
Gl(a;,m) —GI(Z’n) — 2G4 (z,n) - Ga(xz,n,m —n)—

Go(x,m — n,n)? (A.9)

G5(:B,m,n) =

As before, Equation A.9 can further be simplified as in Equation A.10. By comparing

APPENDIX A. STRUCTURAL WIRELENGTH DISTRIBUTION FUNCTION 107

the coefficients in the moment generating polynomial, the structural distribution function
of an L-shaped block can be found as listed in Table A.2.

2m—2 m+n—2
Gs(z,m,n) = Z fi(2m +2,4)z! — 2 Z film+n+2,4)z'+
=0 =0
2m—n—2 2n—2 m—1
2 Z fi2m —n +2,4)z' + Z fi(2n +2,4)z! — 2(m —n) Z film +3,4)z! +
=0 =0 =0

m—3 2m—2n—2 n—2
2(m—n)Zfl(m+1,4):1:l— Z fl(2m—2n+2,4)$l—2Zfl(n+2,4)$l—
=0 =0 =0

m—n—1 m—n—2

2n Z film —n +3,4)z! — 2 Z film —n+2,4)z" +
=0 1=0

m—n—3

2n > film—n+1,4)2! (A.10)
=0

Table A.2: Structural Length Distribution Function for L-Shaped Block

| Range || 5500 |
1<i<m-n 13 _ g2 4 AmToin®o1y
m-n<l<n L2 — (m—)% + 67"‘—12m6n+6n‘—1l+ md—m+ﬂ+3m§n—9mnz+5nd
n<l<2m—2n — 118 4 (2n - m)I% + 6m27162mn+1l I ma,mﬁmzz,gmnz%na
2m —2n <1< m 7%13 +ni2 + 6mn—3mj—6n3+1l T 5m5—2m+n—97glzn+3mnz+2n5
m <1< 2n —3 +2m —n)® + 18’""—15732—6n2+1l+ 117"3—2m+n—152m2n+3mn2+2n3
2n <1 <2m—n —%lB +2(m — n)lz + 36mn7180mz+1 I+ 11mS —2m+2n—15m-n+3mn=—2n°
2m —n<Il<m+n %13 —ni? 4+ 12mn—67%3+6n1—1l+ 3m“+n—3min—3mnz—n5
m+n<1<2m ((m+n—l)2g1)(m+n4)

APPENDIX A. STRUCTURAL WIRELENGTH DISTRIBUTION FUNCTION 108

A.3.3 O-Shaped and C-Shaped Blocks

—~—

m

Figure A.6: O-Shaped Block

The next two-dimensional example is to consider the moment generating function of
an O-shaped block (Figure A.6). In this diagram, the O-shaped block may be sub-divided

into eight sub-blocks. Four of them are ™5™ x ™5™ square blocks and the remaining four

are 5% X n rectangular blocks. Removing the middle n x n block from the m x m block

eliminates not only the interconnections within the n x n block but also the interconnections

from the n x n block to the O-shaped block. Unlike the previous two cases, an interesting

side effect is that the all the wirelengths between the opposite *5™ x n rectangular blocks are

extended. This is because these interconnections cannot pass through the n x n obstacle
directly. Equations A.11 shows the structural wirelength distribution function of an O-

shaped block.

2 2 _
Golw,m,m) = SHEE CUBNT o 0y Gy, ™ T
2 2 2 2
4G (w,n, T 4 26y (e, T Y (G () — Ga(w,m)) - 2 (A.11)

2 72

The last example is to consider the moment generating function of a C-shaped block
(Figure A.7). The C-shaped block may be sub-divided into three rectangular sub-blocks.

Two of them are 5 x n blocks and the remaining one is an m —n X n block. Removing

the n x n block from the m x m block eliminates not only the interconnections within the
n X n block but also the interconnections from the n x n block to the C-shaped block. As
in the O-shaped block, removing the n x n block also increases the wirelength between the

two ™5 x n blocks. The moment generating function of a C-shaped block G7(z,m,n) is

APPENDIX A. STRUCTURAL WIRELENGTH DISTRIBUTION FUNCTION

Figure A.7: C-Shaped Block

shown in Equation A.12.

2 2
Gr(,mym) = LB GH@IT oy G nym—)

2 2
2Gs(w,n,m —n) - Gala,n, =) = 2G4 (a,n) - Gala,n, =——

)+
m—n m_n)-x""'l

GQ((II,’I’L,’I’L) 'GQ(xa 2) 2

109

(A.12)

APPENDIX A. STRUCTURAL WIRELENGTH DISTRIBUTION FUNCTION 110

A.3.4 Comparison of L-Shaped Block, C-Shaped Block and O-Shaped
Block

Figure A.8 compares the structural wirelength distribution s(I) of an L-shaped block, a
C-shaped block and an O-shaped block for M = 256 and N = 128. Given the same number
of gates, the L-shaped block has the shortest wirelength distribution whereas the O-shaped
block has the longest wirelength distribution. Since the L-shaped has a more compact

structure, it is usually better to place obstacles at the corner of a functional block.

O- shoped Block

———e

_‘_F\-\._ W,

6 "‘-\-\1 \

5 | L-shaped Block

C-shaped Block

log(s(1))

0 50 100 150 200 250 300 350 400 450 500

Wirelength (l) in gate width

Figure A.8: Structural Wirelength Distributions of an L-shaped block, a C-shaped block
and an O-shaped block (M = 256, N = 128).

Bibliography

[ARM]

[AssO1]

[Bak90]

[BCRY0]

[Ben9s]

[Ber97]

[Bha94]

[Bla69)]

[Bri01]

[Cad]

[CAGO1]

ARM Limited. ARM Architecture. In hittp://www.arm.com/.

Semiconductor Industry Association. The National Technology Roadmap for
Semiconductors. San Jose, CA, 1997 and 2001.

H. Buman Bakoglu. Circuit, Interconnections, and Packaging for VLSI. Addi-
son Wesley, 1990.

B. S. Baker, E. G. Coffman, and R. L. Rivest. Orthogonal packings in two
dimensions. SIAM Journal on Computing, 9(4):846-855, 1990.

James E. Bennett. Latency Tolerant Architectures. PhD thesis, Stanford Uni-
versity, 1998.

Bertrand Meyer. Object-oriented Software Construction. Prentice-Hall, 1997.

Neal A. Bhadkamkar. A Nonlinear Silicon Cochlea. PhD thesis, Stanford
University, 1994.

James R. Black. Electromigration — A brief survey on some recent results.
IEEE Transactions on FElectron Devices, ED-16:338, 1969.

Pierre Bricaud. Standards for SOC IP? 1In Design Verification FEzhibition,
November 2001.

Cadence Design System. Virtual Component Co-Design (VCC) Overview. In
http://www. cadence.com /products/vee. html.

Phillip Christie and Jose Pineda de Gyvez. Pre-layout prediction of interconnect
manufacturability. In IEEE/ACM International Workshop on System Level
Interconnect Prediction, pages 167-173, 2001.

111

BIBLIOGRAPHY 112

[CP96]

[CSBY2]

[DDMY6]

[DDM9YS]

[DF90]

[Die00]

[Don79]

[Don81]

[Dwi98]

[ES00]

[FCIV97]

J. M. Chang and M. Pedram. Energy minimization using multiple supply
voltages. In International Symposium on Low Power FElectronics and Design,
pages 157-162, 1996.

Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen. Low-
Power CMOS Digital Design. IEEE Journal of Solid State Circuits, pages
473-484, 1992.

Jeffrey A. Davis, Vivek De, and James Meindl. Optimal Low Power Intercon-
nect Networks. Symposium on VLSI Technology Digest of Technical Papers,
pages 78-79, 1996.

Jeffrey A. Davis, Vivek K. De, and James D. Meindl. A Stochastic Wire-
Length Distribution for Gigascale Integration (GSI) - Part 1: Derivation and
Validation. IEEE Transaction on Electron Dewvices, 45:580-589, March 1998.

Pradeep K. Dubey and Michael J. Flynn. Optimal Pipelining. Journal of
Parallel and Distributed Computing, 8:10-19, 1990.

Keith Diefendorff. Best New Technology: POWERA4. Microprocessor Report,
February 2000.

Wilm E. Donath. Placement and Average Interconnection Lengths of Computer
Logic. IEEE Transaction on Circuits and Systems, CAS-26(4):272-277, April
1979.

Wilm E. Donath. Wire length distribution for placements of computer logic.
IBM Journal of Research and Development, 25:152-155, 1981.

Dwight Sunada and David Glasco and Michael Flynn. ABSS v2.0: a SPARC
Simulator. Technical Report CSL-TR-98-755, Stanford University, 1998.

Terry C. Edwards and Michael B. Steer. Foundations of Interconnect and
Microstrip Design. Wiley, 2000.

Keith I. Farkas, Paul Chow, Norman P. Jouppi, and Zvonko Vranesic. The
Multicluster Architecture: Reducing Cycle Time Through Partitioning. In
Annual International Symposium on Microarchitecture, pages 149-159, 1997.

BIBLIOGRAPHY 113

[Feus82]

[FHO1]

[FHPOO]

[FHR99)

[Fis83]

[FJCY5]

[Fly95]

[Fu99]

[GAS9)]

[Gla02]

[GM92]

[Gom83|

Michael Feuer. Connectivity of random logic. IEEE Transactions on Computer,
C-31:29-33, 1982.

Michael J. Flynn and Patrick Hung. CAD Tools for System-Level Modeling
and Implementation. Wiley Software Focus, pages 134-139, 2001.

Michael J. Flynn, Patrick Hung, and Armita Peymandoust. Using Simple
Tools to Evaluate Complex Architectural Tradeoffs. IEEE Micro, 20(4):67-75,
July/August 2000.

Michael J. Flynn, Patrick Hung, and Kevin W. Rudd. Deep-Submicron Micro-
processor Design Issues. IEEE Micro, 19(4):11-22, July/August 1999.

Joseph A. Fisher. Very long instruction word architectures and the ELI-512.
In Annual Symposium on Computer Architecture, pages 140-50, 1983.

Keith I. Farkas, Norman P. Jouppi, and Paul Chow. Register File Design Con-
siderations in Dynamically Scheduled Processors. Western Research Laboratory
Research Report 95/10, pages 1-28, November 1995.

Michael J. Flynn. Computer Architecture Pipelined and Parallel Processor De-
sign. Jones and Bartlett Publishers, 1995.

Steve Fu. Cost Performance Optimization of Microprocessors. PhD thesis,
Stanford University, 1999.

Carol V. Gura and Jacob A. Abraham. Average Interconnection Length and
Interconnection Distribution Based on Rent’s Rule. In Design Automation
Conference, pages 574-577, 1989.

Peter N. Glaskowsky. Stretch Goals for Intel Servers. Microprocessor Report,
March 2002.

Cal T. Gabriel and Jim P. McVittie. How plasma etching damages thin gate
oxides. Solid State Technology, 35:81-87, June 1992.

Hasaan Gomaa. The Impact of Rapid Prototyping on Specifying User Require-
ments. ACM SIGSOFT Software Engineering Notes, 2(8):17-28, 1983.

BIBLIOGRAPHY 114

[HCO1]

[Hen99]

[HF97]

[HF99]

[HFOO]

[HS90]

[HSFO1]

[Hsu83]

[Isr00]

[Joh91]

[TW89]

Charlie Hauck and Charlie Cheng. VLIS Implementation of a Portable 266MHz
32-Bit RISC Core. Microprocessor Report, October 2001.

Henry Chang and Larry Cooke and Merrill Hunt and Grant Martin and Andrew
McNelly and Lee Todd. Surviving the SOC Revolution. Kluwer Academic
Publishers, 1999.

Patrick Hung and Michael J. Flynn. Stochastic Congestion Model for VLSI
Systems. Technical Report CSL-TR-97-737, Stanford University, October 1997.

Patrick Hung and Michael J. Flynn. Deep Submicron VLSI Floorplanning
Algorithm. In 1999 Electronic Devices and Systems Conference, pages 84-87,
1999.

Patrick Hung and Michael J. Flynn. Designing Future Microprocessors. In
International Conference on Parallel and Distributed Computing, Applications
and Technologies, 2000.

Dwight Hill and Don Shugard. Global Routing Considerations in a Cell Syn-
thesis System. In Proc. of 27th Design Automation Conference, pages 312-316,
1990.

Patrick Hung, Luc Sémeria, and Michael Flynn. Effects of Aspect Ratio and
Routing Obstacles on Interconnect Wirelength. In IEEE ASIC/SOC Confer-
ence, 2001.

C.P. Hsu. Minimum-via topological routing. IEEE Transaction on Computer-
Aided Design of Integrated Circuits and Systems, CAD-2(4):235-246, 1983.

Israel Koren and Zahava Koren. Incorporating Yield Enhancement into the

Floorplanning Process. IEEE Transactions on Computers, 49:532-541, 2000.
Mike Johnson. Superscalar Microprocessor Design. Prentice Hall, 1991.

N. P. Jouppi and D. W. Wall. Available instruction-level parallelism for su-
perscalar and superpipelined machines. In International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pages
290-302, 1989.

BIBLIOGRAPHY 115

[Kaj83]

[Kel96]

[KGV83]

[Kre0lal

[Kre01b]

[Leb83]

[Lew01]

[LFK*93]

[LR71]

[LSWO4]

[Mag]

[Mag98a]

Y. Kajitani. Order of Channels for Safe Routing and Optimal Compaction of
Routing Area. IEEE Transaction on Computer-Aided Design, CAD-2(4):293~
300, 1983.

Jim Keller. The 21264: A superscalar alpha processor with out-of-order execu-

tion. In Annual Microprocessor Forum, October 1996.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220:671-680, 1983.

Kevin Krewell. Alpha Quietly Reaches 1GHz. Microprocessor Report, August
2001.

Kevin Krewell. Athlon XP Eschews GHz. Microprocessor Report, November
2001.

André Leblond. CAF: A Computer-Assisted Floorplanning Tool. In Proc. of
20th Design Automation Conference, pages 747-753, 1983.

Bryan Lewis. Semiconductor Intellectual Property: The Key Ingredient for
SLI/SOC. Gartner Group Research Brief, March 2001.

P. Geoffrey Lowney, Stefan Freudenberger, Thomas Karzes, W.D. Lichtenstein,
Robert P. Nix, John S. O’Donnell, and John C. Ruttenberg. The Multiflow
Trace Scheduling Compiler. Journal Of Supercomputing, 7(1-2):51-142, May
1993.

Bernard S. Landman and Roy L. Russo. On a Pin Versus Block Relationship For
Partitions of Logic Graphs. IEEE Transaction on Computers, C-20(12):1469-
1479, December 1971.

K. F. Liao, M. Sarrafzadeh, and C. K. Wong. Single-Layer Global Routing.
IEEE Transaction on Computer-Aided Design/ICS, 13(1):38-47, 1994.

Magma Design Automation, Inc. BlastFusion and BlastChip Systems

Overview. In http://www.magma-da.com/.

Maggie Kang and Wayne W. M. Dai. Arbitrary Rectilinear Block Packing
Based on Sequence Pair. In Proc. of International Conference on Computer

Aided Design, pages 259-266, 1998.

BIBLIOGRAPHY 116

[Mag98b]

[McF97]

[MFNK95]

[Mic02]

[MNKO95]

[Mon]

[MPRO2]

[MRR*53]

[MS96]

[MY87]

[Naf99]

[Nai87]

Maggie Kang and Wayne W. M. Dai. Topology Constrained Rectilinear Block
Packing for Layout Reuse. In Proc. of International Symposium of Physical
Design, pages 179-186, 1998.

Grant W. McFarland. CMOS Technology Scaling and its impact on Cache
Delay. PhD thesis, Stanford University, 1997.

H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Rectangle-Packing-
Based Module Placement. In Proc. of International Conference on Computer
Aided Design, pages 472-479, 1995.

Microprocessor Report, Various issues, 1994-2002.

H. Matsuda, S. Nakatake, and Y. Kajitani. Optimum Slicing Structure Floor-
planning with Routing Area Included. IFICE Technical Report VLD9/-109,
94(531):9-14, 1995.

Monterey Design System. System-Driven Physical Design. In
http://www.montereydesign.com/.

MPR’s Analysts’ Choice Award Winners. Microprocessor Report, April 2002.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. 21:1087-1092, 1953.

Giovanni De Micheli and Mariagiovanna Sami. Hardware/Software Co-Design.
Kluwer Academic Publisher, 1996.

Akira Masaki and Minoru Yamada. Equations for Estimating Wire Length in
Various Types of 2-D and 3-D System Packaging Structures. IEEFE Transaction
on Components, Hybrids, and Manufacturing Technology, CHMT-10(2):190—
198, June 1987.

Samuel Naffziger. Design Methodologies for Interconnect in GHz+ ICs. In
ISSCC Tutorial, 1999.

Ravi Nair. A Simple Yet Effective Technique for Global Wiring. IEEE Trans-
action on Computer Aided Design of Integrated Circuits and Systems, CAD-
6:165—-172, March 1987.

BIBLIOGRAPHY 117

[NFMK96]

[NMN87]

[Ott82]

[PBS98]

[Phi97]

[PJSY6]

[Pol]

[PP8Y)]

[Pri57]

[RHWGY5]

[RKN8Y]

S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani. Module Placement on
BSG-Structure and IC Layout Applications. In Proc. of International Confer-
ence on Computer Aided Design, pages 484—491, 1996.

N. J. Naclerio, S. Masuda, and K. Nakajima. Via minimization for gridless

layouts. In Proc. of 24th Design Automation Conference, pages 159-165, 1987.

Ralph H.J.M. Otten. Automatic floorplan design. In Proc. of 19th Design
Automation Conference, pages 261-267, 1982.

Phiroze N. Parakh, Richard B. Brown, and Karem A. Sakallah. Congestion
Driven Quadratic Placement. In Proc. of 35th Design Automation Conference,
pages 275278, 1998.

Philip G. Emma. Understanding some simple processor performance limits.
IBM Journal of Research and Development, 41(3):215-232, May 1997.

Subbarao Palacharla, Norman P. Jouppi, and James E. Smith. Quantifying
the Complexity of Superscalar Processors. Technical Report CS-TR-96-1328,

University of Wisconsin-Madison, November 1996.

Dale Pollek. Deep submicron design is more than just "noise”. In EFEdesign.
June 9, 2002.

M. Pedram and B. Preas. Interconnection Length Estimation for Optimized
Standard Cell Layouts. In International Conference on Computer Design, pages
390-393, 1989.

R. C. Prim. Shortest connection networks and some generalizations. Bell
System Technical Journal, 36(6):1389-1401, 1957.

Mendel Rosenblum, Stephen Herrod, Emmett Witchel, and Anoop Gupta.
Complete Computer System Simulation: the SIMOS Approach. IEEE Par-
allel & Distributed Technology: Systems € Applications, 3:34—43, 1995.

Chong S. Rim, Toshinobu Kashiwabara, and Kazuo Nakajima. Exact Algo-
rithms for Multilayer Topological Via Minimization. IEEE Transaction on
Computer-Aided Design of Integrated Circuits and Systems, 8(4):1165-1184,
1989.

BIBLIOGRAPHY 118

[Ron01]

[Roy70]

[RS95]

[Rud99]

[SBV95]

[SFK97]

[She95]

[SNK9S]

[Sny01]

[SOT72]

[SP86]

Ron Ho and Kenneth W. Mai and Mark A. Horowitz. The Future of Wires.
Proceedings of the IEEE, 89(4):490-504, April 2001.

Winston W. Royce. Managing Development of Large Scale Software Systems:
Concepts and Techniques. In IJEEE WESCON, volume 14, pages A/1-1-A/1-9,
August 1970.

Salil Raje and Majid Sarrafzadeh. Variable Voltage Scheduling. In International
Symposium on Low Power Design, pages 9-14, 1995.

Kevin Rudd. VLIW Processors: Efficiently Exploiting Instruction-level Parallel
Processors. PhD thesis, Stanford University, 1999.

Gurindar S. Sohi, Scott E. Breach, and T.N. Vijaykumar. Multiscalar pro-
cessors. In 22nd International Symposium on Computer Architechture, pages
414-425, 1995.

Dezso Sima, Terence Fountain, and Peter Kacsuk. Advanced Computer Archi-

tectures: A Design Space Approach. Addison-Wesley, 1997.

Naveed Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer
Academic Publishers, 1995.

Keishi Sakanushi, Shigetoshi Nakatake, and Yoji Kajitani. The Multi-BSG:
Stochastic Approach to an Optimum Packing of Convex-Rectilinear Blocks. In
Proc. of International Conference on Computer Aided Design, pages 267274,
1998.

Cary D. Snyder. Synthesizable Core Makeover. Microprocessor Report, July
2001.

LE. Sutherland and D. Oestreicher. How big should a printed circuit board
be? IEEE Transactions on Computers, C-22:537-542, 1972.

Sarma Sastry and Alice C. Parker. Stochastic Models for Wireability Analysis
of Gate Arrays. IEEE Transaction on Computer-Aided Design, CAD-5(1):52—
65, January 1986.

BIBLIOGRAPHY 119

[ST83)]

[Sto83]

[Str96]

[Str99]

[Sys]
[Tai]

[TEE*96]

[Tex]

[TMWLY6]

[UM97]

[Uni]

[Vir]

T. Sakurai and K. Tamaru. Simple Formulas for Two- and Three- Dimen-
sional Capacitances. IEEE Transaction on Electron Devices, ED-30(2):183~
185, February 1983.

L. Stockmeyer. Optimal Orientations of Cells in Slicing Floorplan Designs.
Information and Control, 59:91-101, 1983.

Dirk Stroobandt. Improving Donath’s technique for estimating the average
interconnection length in computer logic. Technical Report DG 96-01, ELIS,
June 1996.

Dirk Stroobandt. Tutorial on System-Level Interconnect Prediction. In Work-

shop on System-Level Interconnect Prediction, 1999.
SystemC Consortium. In http://www.systemc.org/.
Taiwan Semiconductor Manufacturing Company. In http://www.tsmc.com/.

Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo,
and Rebecca L. Stamm. Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreaded Processor. In 23rd International

Symposium on Computer Architechture, pages 191-202, May 1996.

Texas Instruments. Open Multimedia Applications Platform (OMAP)
Overview. In http://www.ti.com/sc/omap/.

V. Tiwari, S. Malik, A. Wolfe, and M. Lee. Instruction Level Power Analysis
and Optimization of Software. Journal of VLSI Signal Processing, 13(2/3),
1996.

R. Uhlig and T. Mudge. Trace-driven memory simulation: A survey. ACM
Computing Surveys, 29:128-170, June 1997.

United Microelectronics Corporation. In http://www.umc.com/.

Virtual Socket Interface Alliance. Virtual socket interface architecture docu-

ment. In http://www.vsi.org/library/vsi-or.pdf.

BIBLIOGRAPHY 120

[WFW'94] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson,

[XC98]

S. W. K. Tjiang, Shih-Wei Liao, Chau-Wen Tseng, M. W. Hall, M. S. Lam,
and J. L. Hennessy. SUIF: An infrastructure for research on parallelizing and

optimizing compilers. In SIGPLAN, volume 29, pages 31-37, December 1994.

J. Xu and C. Kuan Cheng. Rectilinear Block Placement Using Permutation-
pair. In Proc. of International Symposium of Physical Design, pages 173-178,
1998.

